Skip to main content
Log in

Distinct distribution revealing multiple bacterial sources for 1-O-monoalkyl glycerol ethers in terrestrial and lake environments

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The 1-O-monoalkyl glycerol ethers (MAGEs) were initially viewed as the biomarkers for sulfate-reducing bacteria (SRB) mediating anaerobic oxidation of methane in the marine environments. However, limited information is known about their distribution in terrestrial and other aquatic settings including soils, fresh water lakes, and cave sediments, which may obscure our understanding of their biological sources. Here we found that MAGEs were ubiquitous but differed obviously in distributional pattern among those environments. The surface soils are dominated generally by iC15:0-MAGE, followed by nC16:0-MAGE whereas the lake sediments show the opposite, resulting in significantly higher iC15:0/nC16:0 ratios in soils than in lake sediments. The cave deposits are characterized by considerably higher proportions of branched MAGEs than the former two environments. The logarithm of iC15:0/aC15:0 ratio shows a significant negative correlation with soil pH, likely reflecting an adaptation of microbial cell membrane to change in the ambient proton concentration. The MAGE profiles in cultured bacteria cannot fully explain the MAGE distribution in all the samples analyzed. Therefore, MAGEs in soil, lake sediments, and cave deposits likely have additional biological source(s) other than SRB and cultured MAGE-producing bacteria. The difference in MAGE pattern among environments is likely to be attributed to change in microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blumenberg M, Seifert R, Reitner J, et al. 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA, 101: 11111–11116

    Article  Google Scholar 

  • Blyth A J, Jex C N, Baker A, et al. 2014. Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs) in speleothems and associated soils. Org Geochem, 69: 1–10

    Article  Google Scholar 

  • Bradley A S, Fredricks H, Hinrichs K-U, et al. 2009. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Org Geochem, 40: 1169–1178

    Article  Google Scholar 

  • Crowe M A, Power J F, Morgan X C, et al. 2014. Pyrinomonas methylaliphatogenes gen. nov., sp. nov., a novel group 4 thermophilic member of the phylum Acidobacteria from geothermal soils. Int J Syst Evol Micr, 64: 220–227

    Article  Google Scholar 

  • Ge L, Jiang S, Yang T, et al. 2011. Glycerol ether biomarkers and their carbon isotopic compositions in a cold seep carbonate chimney from the Shenhu area, northern South China Sea. Chin Sci Bull, 56: 1700–1707

    Article  Google Scholar 

  • Hallgren B, Larsson S. 1962. The glyceryl ethers in the liver oils of elasmobranch fish. J Lipid Res, 3: 31–38

    Google Scholar 

  • Hamilton-Brehm S, Gibson R, Green S, et al. 2013. Thermodesulfob-acterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park. Extremophiles, 17: 251–263

    Article  Google Scholar 

  • Heindel K, Birgel D, Brunner B, et al. 2012. Post-glacial microbialite formation in coral reefs of the Pacific, Atlantic, and Indian Oceans. Chem Geol, 304–305: 117–130

    Article  Google Scholar 

  • Hernandez-Sanchez M T, Homoky W B, Pancost R D. 2014. Occurrence of 1-O-monoalkyl glycerol ether lipids in ocean waters and sediments. Org Geochem, 66: 1–13

    Article  Google Scholar 

  • Hinrichs K U, Summons R E, Orphan V, et al. 2000. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem, 31: 1685–1701

    Article  Google Scholar 

  • Hopmans E C, Weijers J W H, Schefu E, et al. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224: 107–116

    Article  Google Scholar 

  • Huber R, Wilharm T, Huber D, et al. 1992. Aquifex pyrophilus gen. nov. sp. nov., represents a novel Group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol, 15: 340–351

    Article  Google Scholar 

  • Huber R, Rossnagel P, Woese C R, et al. 1996. Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol, 19: 40–49

    Article  Google Scholar 

  • Imbs A, Demina O, Demidkova D. 2006. Lipid class and fatty acid composition of the boreal soft coral Gersemia rubiformis. Lipids, 41: 721–725

    Article  Google Scholar 

  • Jahnke L L, Eder W, Huber R, et al. 2001. Signature lipids and stable carbon isotope analyses of Octopus spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microb, 67: 5179–5189

    Article  Google Scholar 

  • Jenkyns H C, Schouten-Huibers L, Schouten S, et al. 2012. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim Past, 8: 215–226

    Article  Google Scholar 

  • Jones R T, Robeson M S, Lauber C L, et al. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J, 3: 442–453

    Article  Google Scholar 

  • Langworthy T A, Holzer G, Zeikus J G, et al. 1983. Iso- and anteisobranched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst Appl Microbiol, 4: 1–17

    Article  Google Scholar 

  • Langworthy T A, Pond J L. 1986. Membranes and Lipids of Thermophiles, Thermophilies: General, Molecular and Applied Microbiology. New York: Wiley

    Google Scholar 

  • Liu X L, Summons R E, Hinrichs K U. 2012. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. Rapid Commun Mass Sp, 26: 2295–2302

    Article  Google Scholar 

  • Oppermann B I, Michaelis W, Blumenberg M, et al. 2010. Soil microbial community changes as a result of long-term exposure to a natural CO2 vent. Geochim Cosmochim Acta, 74: 2697–2716

    Article  Google Scholar 

  • Orphan V J, Hinrichs K-U, Ussler W, et al. 2001. Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microb, 67: 1922–1934

    Article  Google Scholar 

  • Pancost R D, Bouloubassi I, Aloisi G, et al. 2001. Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem, 32: 695–707

    Article  Google Scholar 

  • Pancost R D, Pressley S, Coleman J M, et al. 2005. Lipid biomolecules in silica sinters: indicators of microbial biodiversity. Environ Microbiol, 7: 66–77

    Article  Google Scholar 

  • Pancost R D, Pressley S, Coleman J M, et al. 2006. Composition and implications of diverse lipids in New Zealand Geothermal sinters. Geobiology, 4: 71–92

    Article  Google Scholar 

  • Pape T, Blumenberg M, Seifert R, et al. 2005. Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeogr Palaeoclimatol palaeoecol, 227: 31–47

    Article  Google Scholar 

  • Pearson E J, Juggins S, Talbot H M, et al. 2011. A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in lakes. Geochim Cosmochim Acta, 75: 6225–6238

    Article  Google Scholar 

  • Quijano L, Cruz F, Navarrete I, et al. 1994. Alkyl glycerol monoethers in the marine sponge Desmapsamma anchorata. Lipids, 29: 731–734

    Article  Google Scholar 

  • Rütters H, Sass H, Cypionka H, et al. 2001. Monoalkyl ether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol, 176: 435–442

    Article  Google Scholar 

  • Řezanka T, Křesinová Z, Kolouchová I, et al. 2012. Lipidomic analysis of bacterial plasmalogens. Folia Microbiol, 57: 463–472

    Article  Google Scholar 

  • Ring M W, Schwar G, Thiel V, et al. 2006. Novel iso-branched ether lipids as specific markers of developmental sporulation in the Myxobacterium Myxococcus xanthus. J Biol Chem, 281: 36691–36700

    Article  Google Scholar 

  • Saito R, Oba M, Kaiho K, et al. 2013. Ether lipids from the Lower and Middle Triassic at Qingyan, Guizhou Province, Southern China. Org Geochem, 58: 27–42

    Article  Google Scholar 

  • Santos V L C S, Billett D S M, Wolff G A. 2002. 1-O-Alkylglyceryl ether lipids of the gut walls and contents of an abyssal Holothurian (Oneirophanta mutabilis). J Brazil Chem Soc, 13: 653–657

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Pancost R D, et al. 2000. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA, 97: 14421–14426

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Schefuss E, et al. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204: 265–274

    Article  Google Scholar 

  • Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. 2011. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid): A common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol, 77: 4147–4154

    Article  Google Scholar 

  • Sinninghe Damsté J S, Rijpstra W I C, Strous M, et al. 2004. A mixed ladderane/n-alkyl glycerol diether membrane lipid in an anaerobic ammonium-oxidizing bacterium. Chem Commun: 2590–2591

    Google Scholar 

  • Weijers J W H, Schouten S, Hopmans E C, et al. 2006a. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8: 648–657

    Article  Google Scholar 

  • Weijers J W H, Schouten S, Spaargaren O C, et al. 2006b. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37: 1680–1693

    Article  Google Scholar 

  • Weijers J W H, Schouten S, Van Den Donker J C, et al. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71: 703–713

    Article  Google Scholar 

  • Yang H, Ding W, Zhang C L, et al. 2011. Occurrence of tetraether lipids in stalagmites: Implications for sources and GDGT-based proxies. Org Geochem, 42: 108–115

    Article  Google Scholar 

  • Yang H, Pancost R D, Tang C, et al. 2014a. Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess-paleosol sequence: Implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79

    Article  Google Scholar 

  • Yang H, Pancost R D, Dang X, et al. 2014b. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semiarid and arid regions. Geochim Cosmochim Acta, 126: 49–69

    Article  Google Scholar 

  • Yang H, Pancost R D, Tang C, et al. 2014b. Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess-paleosol sequence: Implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79

    Article  Google Scholar 

  • Yang H, Ding W, Xie S. 2014c. Distribution of microbial fatty acids and fatty alcohols in soils from an altitude transect of Mt. Jianfengling in Hainan, China: Implication for paleoaltimetry and paleotemperature reconstruction. Sci China Earth Sci, 57: 999–1012

    Article  Google Scholar 

  • Zeng Y B, Ward D M, Brassell S C, et al. 1992a. Biogeochemistry of hot spring environments: 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chem Geol, 95: 347–360

    Google Scholar 

  • Zeng Y B, Ward D M, Brassell S C, et al. 1992b. Biogeochemistry of hot spring environments: 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats. Chem Geol, 95: 327–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zheng, F., Xiao, W. et al. Distinct distribution revealing multiple bacterial sources for 1-O-monoalkyl glycerol ethers in terrestrial and lake environments. Sci. China Earth Sci. 58, 1005–1017 (2015). https://doi.org/10.1007/s11430-014-5016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5016-z

Keywords

Navigation