Skip to main content

Recent investigation on the coupling between the ionosphere and upper atmosphere

Abstract

Scientific attention has recently been focused on the coupling of the earth’s upper atmosphere and ionosphere. In the present work, we review the advances in this field, emphasizing the studies and contributions of Chinese scholars. This work first introduces new developments in the observation instruments of the upper atmosphere. Two kinds of instruments are involved: optical instruments (lidars, FP interferometers and all-sky airglow imagers) and radio instruments (MST radars and all-sky meteor radars). Based on the data from these instruments and satellites, the researches on climatology and wave disturbances in the upper atmosphere are then introduced. The studies on both the sporadic sodium layer and sporadic E-layer are presented as the main works concerning the coupling of the upper atmosphere and the low ionosphere. We then review the investigations on the ionospheric longitudinal structure and the causative atmospheric non-migrating tide as the main progress of the coupling between the atmosphere and the ionospheric F2-region. Regarding the ionosphere-thermosphere coupling, we introduce studies on the equatorial thermospheric anomaly, as well as the influence of the thermospheric winds and gravity waves to the ionospheric F2-region. Chinese scholars have made much advancement on the coupling of the ionosphere and upper atmosphere, including the observation instruments, data precession, and modeling, as well as the mechanism analysis.

This is a preview of subscription content, access via your institution.

References

  • Abdu M A, Pancheva D, Bhattacharyya A. 2011. Aeronomy of the Earth’s Atmosphere and Ionosphere. Heidelberg: Springer

    Google Scholar 

  • Andrews D G, Holton J R, Leovy C B. 1987. Middle Atmosphere Dynamics. San Diego: Academic Press

    Google Scholar 

  • Basu S, Pallamraju D. 2006. Science rationale for CAWSES (Climate and Weather of the Sun-Earth System): SCOSTEP’s interdisciplinary program for 2004–2008. Adv Space Res, 38: 1781–1791

    Google Scholar 

  • Chapman S, Lindzen R S. 1970. Atmospheric Tides. Norwell: Reidel Mass

    Google Scholar 

  • Chen D, Chen Z Y, Lü D R. 2012. Simulation of the stratospheric gravity waves generated by the Typhoon Masta in 2005. Chin Sci Earth Sci, 55: 602–610

    Google Scholar 

  • Chen L, Yi F. 2011. Average properties and small-scale variations of the mesospheric Na and Fe layers as observed simultaneously by two closely collocated lidars at 30°N. Ann Geophys, 29: 1037–1048

    Google Scholar 

  • Chen Z Y, Lü D R. 2009. Global structures of the DE3 tide. Chin Sci Bull, 54: 1073–1079

    Google Scholar 

  • Christensen A B, Walterscheid R L, Ross M N, et al. 1994. Global Ultraviolet Imager (GUVI) for the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission. Proc SPIE, 2266: 451–466

    Google Scholar 

  • Collins S C, Plane J M C, Kelley M C, et al. 2002. A study of the role of ion-molecule chemistry in the formation of sporadic sodium layers. J Atmos Sol-Terr Phy, 64: 845–860

    Google Scholar 

  • Chu X Z, Yu Z B, Gardner C S, et al. 2011. Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8°S, 166.7°E), Antarctica. Geophys Res Lett, 38: L23807

    Google Scholar 

  • Ding F, Wan W X, Xu G R, et al. 2011. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J Geophys Res, 116: A09327

    Google Scholar 

  • Ding F, Wan W X, Ning B Q, et al. 2012. Two-dimensional imaging of large-scale traveling ionospheric disturbances over China based on GPS data. J Geophys Res, 117: A08318

    Google Scholar 

  • Ding F, Wan W X, Ning B Q, et al. 2013. Observations of poleward-propagating large-scale traveling ionospheric disturbances in southern China. Ann Geophys, 31: 377–385

    Google Scholar 

  • Ding F, Wan W X, Mao T, et al. 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys Res Lett, doi: 10.1002/2014GL060107

    Google Scholar 

  • Dou X K, Li T, Xu J Y, et al. 2009a. Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations. J Geophys Res, 114: D20103

    Google Scholar 

  • Dou X K, Xue X H, Chen T D, et al. 2009b. A statistical study of sporadic sodium layer observed by sodium lidar at Hefei (31.8°N, 117.3°E). Ann Geophys, 27: 2247–2257

    Google Scholar 

  • Dou X K, Xue X H, Li T, et al. 2010a. Possible relations between Meteors, enhanced electron density layers and sporadic sodium layers. J Geophys Res, 115: A06311

    Google Scholar 

  • Dou X K, Li T, Tang Y H, et al. 2010b. Variability of gravity wave occurrence frequency and propagation direction in the upper mesosphere observed by the OH imager in Northern Colorado. J Atmos Sol-Terr Phy, 72: 457–462

    Google Scholar 

  • Dou X K, Qiu S C, Xue X H, et al. 2013. Sporadic and thermospheric enhanced sodium layers observed by a lidar chain over China. J Geophys Res-Space, 118: 6627–6643

    Google Scholar 

  • Feng W H, Marsh D R, Chipperfield M P, et al. 2013. A global atmospheric model of meteoric iron. J Geophys Res, 118: D50708

    Google Scholar 

  • Forbes J M, Palo S E, Zhang X L. 2000. Variability of the ionosphere. J Atmos Sol-Terr Phy, 62: 685–693

    Google Scholar 

  • Friedman J S, Chu X, Brum C G M, et al. 2013. Observation of a thermospheric descending layer of neutral K over Arecibo. J Atmos Sol-Terr Phy, doi: 10.1016/j.jastp.2013.03.002

    Google Scholar 

  • Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 41: 1003

    Google Scholar 

  • Gan Q, Zhang S D, Yi F. 2012. TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes. J Geophys Res, 117: D07109

    Google Scholar 

  • Garcia R R, Dunkerton T J, Lieberman R S, et al. 1997. Climatology of the semiannual oscillation of the tropical middle atmosphere. J Geophys Res, 102: 26019–26032

    Google Scholar 

  • Gardner C S, Voelz D G. 1987. Lidar studies of the nighttime sodium layer over Urbana, Illinois, 2: Gravity waves. J Geophys Res, 92: 4673–4693

    Google Scholar 

  • Gong S H, Yang G T, Xu J Y, et al. 2013. Statistical characteristics of atmospheric gravity wave in the mesopause region observed with a sodium lidar at Beijing, China. J Atmos Sol-Terr Phy, 97: 143–151

    Google Scholar 

  • Gong S S, Zen X Z, Xue X J. 1997. First observations of sodium layer over Wuhan, China. Sci Sin Math, 40: 369–373

    Google Scholar 

  • Gong S S, Yang G T, Wang J M, et al. 2003. A double sodium layer event observed over Wuhan China by lidar. Geophys Res Lett, 30: 1209

    Google Scholar 

  • Gong Y, Zhou Q H. 2011. Incoherent scatter radar study of the terdiurnal tide in the E- and F-region heights at Arecibo. Geophys Res Lett, 38: L15101

    Google Scholar 

  • Gong Y, Zhou Q H, Zhang S D. 2013. Atmospheric tides in the low latitude E- and F-region and their response to a sudden stratospheric warming in January 2010. J Geophys Res-Space, 118: 7913–7927

    Google Scholar 

  • Gu S Y, Li T, Dou X K, et al. 2013a. Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI. J Geophys Res-Atmos, 118: 1624–1639

    Google Scholar 

  • Gu S Y, Li T, Dou X K, et al. 2013b. Long-term observations of the quasi two-day wave by Hawaii MF radar. J Geophys Res-Space, 118: 7886–7894

    Google Scholar 

  • Guo J P, Wan W X, Forbes J M, et al. 2007. Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res, 112: A10308

    Google Scholar 

  • Hao Y Q, Xiao Z, Zhang D H. 2012. Multi-instrument observation on coseismic ionospheric effects after great Tohoku earthquake. J Geophys Res, 117: A02305

    Google Scholar 

  • He M S, Liu L B, Wan W X, et al. 2009. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC. J Geophys Res, 114: A12309

    Google Scholar 

  • He M S, Liu L B, Wan W X, et al. 2010. Longitudinal modulation of the O/N2 column density retrieved from TIMED/GUVI measurement. Geophys Res Lett, 37: L20108

    Google Scholar 

  • Höffner J, Friedman J S. 2004. Metal layers at high altitudes: A possible connection to meteoroids. Atmos Chem Phys Discuss, 4: 399–417

    Google Scholar 

  • Höffner J, Friedman J S. 2005. The mesospheric metal layer topside: Examples of simultaneous metal observations. J Atmos Sol-Terr Phy, 67: 1226–1237

    Google Scholar 

  • Holton J R. 1982. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci, 39: 791–799

    Google Scholar 

  • Holton J R, Alexander M J. 2000. The role of waves in the transport circulation of the middle atmosphere. In: Atmospheric Science Across the Stratopause. Geophys Monogr Ser, 123: 21–35

    Google Scholar 

  • Huang C M, Zhang S D, Yi F. 2009. Intensive radiosonde observations of the diurnal tide and planetary waves in the lower atmosphere over Yichang (111°18′E, 30°42′N). Ann Geophys, 27: 1079–109

    Google Scholar 

  • Huang C M, Zhang S D, Zhou Q, et al. 2012. Atmospheric waves and their interactions in the thermospheric neutral wind as observed by the Arecibo incoherent scatter radar. J Geophys Res, 113: D02102

    Google Scholar 

  • Huang C M, Zhang S D, Yi F, et al. 2013. Frequency variations of gravity waves interacting with a time-varying tide. Ann Geophys, 31: 1731–1743

    Google Scholar 

  • Huang K M, Zhang S D, Yi F. 2009. Gravity wave excitation through resonant interaction in a compressible atmosphere. Geophys Res Lett, 36: L01803

    Google Scholar 

  • Huang K M, Zhang S D, Yi F. 2010. Reflection and transmission of atmospheric gravity waves in a stably sheared horizontal wind field. J Geophys Res, 115: D16103

    Google Scholar 

  • Huang K M, Liu A Z, Zhang S D, et al. 2012. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions. Ann Geophys, 30: 303–315

    Google Scholar 

  • Huang K M, Zhang S D, Yi F, et al. 2013a. Third-order resonant interaction of atmospheric gravity waves. J Geophys Res-Atmos, 118: 2197–2206

    Google Scholar 

  • Huang K M, Liu A Z, Lu X, et al. 2013b. Nonlinear coupling between quasi two-day wave and tides based on meteor radar observations at Maui. J Geophys Res, 118: 10936–10943

    Google Scholar 

  • Huang K M, Liu A Z, Zhang S D, et al. 2013c. A strong nonlinear interaction event between 16-day wave and diurnal tide from meteor radar observations. Ann Geophys, 31: 2039–2048

    Google Scholar 

  • Huang Y Y, Zhang S D, Yi F, et al. 2013. Global climatological variability of quasi-two-day waves revealed by SABER/TIMED observations. Ann Geophys, 31: 1061–1075

    Google Scholar 

  • Immel T J, Sagawa E, England S L, et al. 2006. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett, 33: L15108

    Google Scholar 

  • Jiang G Y, Xu J Y, Xiong J, et al. 2008. A case study of the mesospheric 6.5-day wave observed by radar systems. J Geophys Res, 113: D16111

    Google Scholar 

  • Jiang G Y, Xu J Y, Franke S J. 2009. The 8-h tide in the mesosphere and lower thermosphere over Maui (20.75°N, 156.43°W). Ann Geophys, 27: 1989–1999

    Google Scholar 

  • Jiang G Y, Xu J Y, Shi J, et al. 2010. The first observation of the atmospheric tides in the mesosphere and lower thermosphere over Hainan, China. Chin Sci Bull, 55: 1059–1066

    Google Scholar 

  • Jiang G Y, Xu J Y, Yuan W, et al. 2012. A comparison of mesospheric winds measured by FPI and meteor radar located at 40°N. Sci China Tech Sci, 55: 1245–1250

    Google Scholar 

  • Killeen T L, Skinner W R, Johnson R M, et al. 1999. The TIMED Doppler interferometer (TIDI). Proc SPIE, 3756: 289–303

    Google Scholar 

  • Killeen T L, Wu Q, Solomon S C, et al. 2005. TIMED Doppler interferometer: Overview and recent results. J Geophys Res, 111: A10S01

    Google Scholar 

  • Leblanc T, McDermid I S, Keckhut P, et al. 1998. Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes. J Geophys Res, 103: 17191–17204

    Google Scholar 

  • Lei J H, Thayer J P, Forbes J M. 2010a. Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly. J Geophys Res, 115: A08311

    Google Scholar 

  • Lei J H, Thayer J P, Burns A G, et al. 2010b. Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm. J Geophys Res, 115: A05303

    Google Scholar 

  • Lei J H, Forbes J M, Liu H L, et al. 2011. Latitudinal variations of middle thermosphere: Observations and modeling. J Geophys Res, 116: A12306

    Google Scholar 

  • Lei J H, Thayer J P, Wang W, et al. 2012a. Simulations of the equatorial thermosphere anomaly: Field-aligned ion drag effect. J Geophys Res, 117: A01304

    Google Scholar 

  • Lei J H, Thayer J P, Wang W, et al. 2012b. Simulations of the equatorial thermosphere anomaly: Physical mechanisms for crest formation. J Geophys Res, 117: A06318

    Google Scholar 

  • Lei J H, Matsuo T, Dou X, et al. 2012c. Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data. J Geophys Res, 117: A01310

    Google Scholar 

  • Lei J H, Burns A G, Thayer J P, et al. 2012d. Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. J Geophys Res, 117: A03314

    Google Scholar 

  • Lei J H, Dou X K, Burns A G, et al. 2013. Annual asymmetry in thermospheric density: Observations and simulations. J Geophys Res-Space, 118: 2503–2510

    Google Scholar 

  • Li G Z, Ning B Q, Liu L B, et al. 2008. Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E×B drifts at solar maximum. Radio Sci, 43: RS4005

    Google Scholar 

  • Li G Z, Ning B Q, Abdu M A, et al. 2012. Precursor signatures and evolution of post-sunset equatorial spread-F observed over Sanya. J Geophys Res, 117: A08321

    Google Scholar 

  • Li G Z, Ning B Q, Abdu M A, et al. 2013a. Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. J Geophys Res-Space, 118: 6544–6557

    Google Scholar 

  • Li G Z, Ning B Q, Patra A K, et al. 2013b. On the linkage of daytime 150 km echoes and abnormal intermediate layer traces over Sanya. J Geophys Res-Space, 118: 7262–7267

    Google Scholar 

  • Li Q, Xu J Y, Yue J, et al. 2011. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China. Ann Geophys, 29: 1401–1410

    Google Scholar 

  • Li Q, Xu J Y, Yue J, et al. 2013. Investigation of a mesospheric bore event over northern China. Ann Geophys, 31: 409–418

    Google Scholar 

  • Li T, She C Y, Liu H L, et al. 2007. Evidence of a gravity wave breaking event and the estimation of wave characteristics from sodium lidar observation over Fort Collins, CO (41°N, 105°W). Geophys Res Lett, 34: L05815

    Google Scholar 

  • Li T, Leblanc T, McDermid I S. 2008. Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W). J Geophys Res, 113: D14109

    Google Scholar 

  • Li T, She C Y, Liu H L, et al. 2009. Observation of local tidal variability and instability, along with dissipation of diurnal tidal harmonics in the mesopause region over Fort Collins, CO (41°N, 105°W). J Geophys Res, 114: D06106

    Google Scholar 

  • Li T, Leblanc T, McDermid I S, et al. 2010. Seasonal and inter-annual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J Geophys Res, 115: D13103

    Google Scholar 

  • Li T, Leblanc T, McDermid I S, et al. 2011. Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. J Geophys Res, 116: D00P05

    Google Scholar 

  • Li T, Fang X, Liu W, et al. 2012a. Narrowband sodium lidar for the measurements of mesopause region temperature and wind. Appl Opt, 51: 5401–5411

    Google Scholar 

  • Li T, Liu A Z, Lu X, et al. 2012b. Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. J Geophys Res, 117: D05130

    Google Scholar 

  • Li T, Calvo N, Yue J, et al. 2013. Influence of El Niño-Southern Oscillation in the mesosphere. Geophys Res Lett, 40: 3292–3296

    Google Scholar 

  • Lindzen R S. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res, 86: 9707–9714

    Google Scholar 

  • Liu H L, Hagan M E. 1998. Local heating/cooling of the mesosphere due to gravity wave and tidal coupling. Geophys Res Lett, 25: 2941–2944

    Google Scholar 

  • Liu H X, Lühr H, Watanabe S. 2007. Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res, 112: A05305

    Google Scholar 

  • Liu J, Liu L B, Zhao B Q, et al. 2011. On the relationship between the pos tmidnight thermospheric equatorial mass anomaly and equatorial ionization anomaly under geomagnetic quiet conditions. J Geophys Res, 116: A12312

    Google Scholar 

  • Liu L B, He M S, Wan W X, et al. 2008. Topside ionospheric scale heights retrieved from Constellation Observing System for meteorology, ionosphere, and climate radio occultation measurements. J Geophys Res, 113: A10304

    Google Scholar 

  • Liu L B, Zhao B Q, Wan W X, et al. 2009. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res, 114: A02302

    Google Scholar 

  • Liu L B, Wan W X, Ning B Q, et al. 2010a. Longitudinal behaviors of the IRI-B parameters of the equatorial electron density profiles retrieved from FORMOSAT-3/COSMIC radio occultation measurements. Adv Space Res, 46: 1064–1069

    Google Scholar 

  • Liu L B, He M S, Yue X A, et al. 2010b. Ionosphere around equinoxes during low solar activity. J Geophys Res, 115: A09307

    Google Scholar 

  • Liu L B, Wan W X, Chen Y D, et al. 2011. Solar activity effects of the ionosphere: A brief review. Chin Sci Bull, 56: 1202–1211, doi: 10.1007/s11434-010-4226-9

    Google Scholar 

  • Liu X, Xu J Y, Liu H L, et al. 2008. Nonlinear interactions between gravity waves with different wavelengths and diurnal tide. J Geophys Res, 113: D08112

    Google Scholar 

  • Liu X, Xu J Y, Gao H, et al. 2009. Kelvin-Helmholtz billows and their effects on mean state duringgravity wave propagation. Ann Geophys, 27: 2789–2798

    Google Scholar 

  • Liu X, Zhou Q H, Yuan W, et al. 2012. Influences of non-isothermal atmospheric backgrounds on variations of gravity wave parameters. Sci China Tech Sci, 55: 1251–1257

    Google Scholar 

  • Liu X, Xu J Y, Yue J, et al. 2013. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere. Ann Geophys, 31: 1–14

    Google Scholar 

  • Luan X L, Dou X K, Lei J H, et al. 2012. Terdiurnal migrating-tide signature in ionospheric total electron content. J Geophys Res, 117: A11302

    Google Scholar 

  • Luan X L, Dou X K. 2013. Seasonal dependence of the longitudinal variations of nighttime ionospheric electron density and equivalent winds at southern midlatitudes. Ann Geophys, 31: 1699–1708

    Google Scholar 

  • Ma R P, Xu J Y, Wang W B, et al. 2010. Variations of the nighttime thermospheric mass density at low and middle latitudes. J Geophys Res, 115: A12301

    Google Scholar 

  • Marsh D R, Janches D, Feng W, et al. 2013. A global model of meteoric sodium. J Geophys Res-Atmos, 118: 11442–11452

    Google Scholar 

  • Mo X H, Zhang D H, Goncharenko L P, et al. 2014. Quasi-16-day periodic meridional movement of the equatorial ionization anomaly. Ann Geophys, 32: 121–131, doi:10.5194/angeo-32-121-2014

    Google Scholar 

  • Mu W F, Wan W X, Ren Z P, et al. 2010. Correlation between ionospheric longitudinal harmonic components and upper atmospheric tides. Chin Sci Bull, 55: 4037–4045

    Google Scholar 

  • Niciejewski R J, Killeen T L, Turnbull M. 1994. Ground-based fabry-perot interferometry of the terrestrial nightglow with a bare charge-coupled device: Remote field site deployment. Opt Eng, 33: 457–465

    Google Scholar 

  • Niu X J, Xiong J G, Wan W X, et al. 2005. Lunar tidal winds in the mesosphere over wuhan and adelaide. Adv Space Res, 36: 2218–2222

    Google Scholar 

  • Pancheva D V, Fejer B G, Garcia R R, et al. 2006. Vertical coupling in the atmosphere/ionosphere system. J Atmos Sol-Terr Phy, 68: 245–598

    Google Scholar 

  • Pancheva D V, Haldoupis C, Marsh D R, et al. 2007. Vertical coupling in the atmosphere/ionosphere system. J Atmos Sol-Terr Phy, 69: 2081–2522

    Google Scholar 

  • Pancheva D, Shiokawa K, Knizova P, et al. 2012. Recent progress in the vertical coupling in the atmosphere-ionosphere system. J Atmos Sol-Terr Phy, 90-91: 1–222

    Google Scholar 

  • Peterson A W, Kieffaber L M. 1973. Infrared photography of OH airglow structures. Nature, 242: 321–322

    Google Scholar 

  • Peterson A W, 1979. Airglow events visible to the naked eye. Applied Optics, 18: 3390–3393

    Google Scholar 

  • Plane J M C. 2004. A new time-resolved model of the mesospheric Na layer: Constraints on the meteor input function. Atmos Chem Phys Discuss, 4: 39–69

    Google Scholar 

  • Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status, Adv Space Res, 30: 129–134, doi: 10.1016/S0273-1177(02)00276-4

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B, et al. 2008. Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere. Geophys Res Lett, 35: L05108

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B, et al. 2009a. Intra-annual variation of wave number 4 structure of vertical E×B drifts in the equatorial ionosphere seen from Rocsat-1. J Geophys Res, 114: A05308

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B. 2009b. GCITEM-IGGCAS: A new global coupled ionosphere-thermosphere-electrodynamics model. J Atmos Sol-Terr Phy, 71: 2064–2076

    Google Scholar 

  • Ren Z P, Wan W X, Xiong J G, et al. 2010. Simulated wave number 4 structure in equatorial F-region vertical plasma drifts. J Geophys Res, 115: A05301

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B. et al. 2011a. Simulated longitudinal variations in the lower thermospheric nitric oxide induced by nonmigrating tides. J Geophys Res, 116: A04301

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B. et al. 2011b. Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J Geophys Res, 116: A02308

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B. et al. 2012a. Simulated longitudinal variations in the E-region plasma density induced by non-migrating tides. J Atmos Sol-Terr Phy, 90-91: 68–76

    Google Scholar 

  • Ren Z P, Wan W X, Xiong J G. et al. 2012b. Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts. J Geophys Res, 117: A01301

    Google Scholar 

  • Ren Z P, Wan W X, Liu L B. et al. 2012c. Simulated midlatitude summer nighttime anomaly in realistic geomagnetic fields. J Geophys Res, 117: A03323

    Google Scholar 

  • Richmond A D, Lu G. 2000. Upper-atmospheric effects of magnetic storms: A brief tutorial. J Atmos Sol-Terr Phy, 62: 1115–1127

    Google Scholar 

  • Rishbeth H. 2006. F-region links with the lower atmosphere? J Atmos Sol-Terr Phy, 68: 469–478

    Google Scholar 

  • Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol-Terr Phy, 63: 1661–1680

    Google Scholar 

  • Robert F, Pfaff R F. 2012. The near-earth plasma environment. Space Sci Rev, 168: 23–112

    Google Scholar 

  • Ruan H B, Lei J H, Dou X K, et al. 2013. Enhancements of nighttime neutral and ion temperatures in the Fregion over Millstone Hill. J Geophys Res-Space, 118: 1768–1776

    Google Scholar 

  • Russell III J M, Mlynczak M G, Gordley L L, et al. 1999. Overview of the SABER experiment and preliminary calibration results. Proc SPIE, 3756: 277–288

    Google Scholar 

  • Sagawa E T, Immel J, Frey H U, et al. 2005. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res, 110: A11302

    Google Scholar 

  • Schmieder B, Vincent B, Baumjohann W, et al. 2004. Climate and weather of the sun-earth system: Cawses. Adv Space Res, 34: 443–448

    Google Scholar 

  • She C Y, Yu J R, Latifi H, et al. 1992. High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements. Appl optics, 31: 2095–2106

    Google Scholar 

  • Shu Z F, Dou X K, Xia H Y, et al. 2012. Low stratospheric wind measurement using mobile rayleigh doppler wind lidar. J Opt Soc Korea, 16: 141–144

    Google Scholar 

  • Song Q, Ding F, Wan W X, et al. 2012. Global propagation features of large-scale traveling ionospheric disturbances during the magnetic storm of 7–10 November 2004. Ann Geophys, 30: 683–694

    Google Scholar 

  • Song Q, Ding F, Wan W X, et al. 2013. Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. J Geophys Res Space Physics, 118: 4583–4593

    Google Scholar 

  • Sutton E K, Nerem R S, Forbes J M. 2007. Density and winds in the thermosphere deduced from accelerometer data. J Spacecraft Rockets, 44: 1210–1219

    Google Scholar 

  • Tang Y H, Dou X K, Li T, et al. 2014. Gravity wave characteristics in the mesopause region revealed from OH airglow imager observations over Northern Colorado. J Geophys Res-Space Physics, 119: 630–645, doi:10.1002/2013JA018955

    Google Scholar 

  • Taylor M J. 1997. A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere. Adv Space Res, 19: 667–676

    Google Scholar 

  • Tu C, Hu X, Yan Z A, et al. 2009. First imaging observation of the gravity waves in the mesopause region in China. Chin Sci Bull, 55: 539–543

    Google Scholar 

  • Wan W X, Liu L B, Pi X Q, et al. 2008. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett, 35: L12104

    Google Scholar 

  • Wan W X, Xiong J, Ren Z P, et al. 2010. Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide. J Geophys Res, 115: A11303

    Google Scholar 

  • Wan W X, Ren Z P, Ding F. et al. 2012. A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere. J Atmos Sol-Terr Phy, 90-91: 52–60

    Google Scholar 

  • Wang J H, Yang Y, Cheng X W, et al. 2012. Double sodium layers observation over Beijing, China. Geophys Res Lett, 39: L15801

    Google Scholar 

  • Wu Q, Gablehouse D, Solomon S C, et al. 2004. A new Fabry-Perot interferometer for upper atmospheric research. Proc SPIE, 5660: 218–227

    Google Scholar 

  • Wu Y F, Xu J Y. 2006. Comparison of horizontal velocity spectra derived from chaff rockets with saturation models. J Geophys Res, 111: D13109

    Google Scholar 

  • Xia H Y, Dou X K, Sun D S, et al. 2012. Mid-altitude wind measurements with mobile rayleigh doppler lidar incorporating system-level optical frequency control method. Opt Express, 20: 15286–15300

    Google Scholar 

  • Xiao Z, Xiao S G, Hao Y Q, et al. 2007. Morphological features of ionospheric response to typhoon. J Geophys Res, 112: A04304

    Google Scholar 

  • Xiao S G, Xiao Z, Shi J K, et al. 2009. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F. J Geophys Res, 114: A01303

    Google Scholar 

  • Xiong J G, Wan W X, Ning B Q, et al. 2004. First results of the tidal structure in the MLT revealed by Wuhan meteor radar (30°40′N, 114°30′E). J Atmos Sol-Terr Phy, 66: 675–68

    Google Scholar 

  • Xiong J G, Wan W X, Ding F, et al. 2013. Coupling between mesosphere and ionosphere over Beijing through semidiurnal tides during the 2009 sudden stratospheric warming. J Geophys Res-Space, 118: 2511–2521

    Google Scholar 

  • Xu G R, Wan W X, She C L, et al. 2008. The relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau obtained with a partial correlation method. Adv Space Res, 42: 219–223

    Google Scholar 

  • Xu J Y, Smith A K. 2003. Perturbations of the sodium layer: Controlled by chemistry or dynamics? Geophys Res Lett, 30: 2056, doi:10.1029/2003GL018040

    Google Scholar 

  • Xu J Y, Smith A K, Ma R. 2003. A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region. J Geophys Res, 108: 4119

    Google Scholar 

  • Xu J Y, Smith A K. 2005. Evaluation of processes that affect the photochemical timescale of the sodium layer. J Atmos Sol-Terr Phy, 67: 1216–1225

    Google Scholar 

  • Xu J Y, Smith A K, Wu Q. 2005. A retrieval algorithm for satellite remote sensing of the nighttime global distribution of the sodium layer. J Atmos Sol-Terr Phy, 67: 739–748

    Google Scholar 

  • Xu J Y, She C Y, Yuan W, et al. 2006a. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude. J Geophys Res, 111: A10S09

    Google Scholar 

  • Xu J Y, Smith A K, Collins R L, et al. 2006b. Signature of an overturning gravity wave in the mesospheric sodium layer: Comparison of a nonlinear photochemical-dynamical model and lidar observations. J Geophys Res, 111: D17301

    Google Scholar 

  • Xu J Y, Liu H L, Yuan W, et al. 2007a. Mesopause structure from termosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J Geophys Res, 112: D09102

    Google Scholar 

  • Xu J Y, Smith A K, Yuan W, et al. 2007b. Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J Geophys Res, 112: D24106

    Google Scholar 

  • Xu J Y, Smith A K, Liu H L, et al. 2009a. Seasonal and quasi-biennial variations in the migrating diurnal tide observed by thermosphere, ionosphere, mesosphere, energetics and dynamics (TIMED). J Geophys Res, 114: D13107

    Google Scholar 

  • Xu J Y, Smith A K, Liu H L, et al. 2009b. Estimation of the equivalent rayleigh friction in mesosphere/lower thermosphere region from the migrating diurnal tides observed by TIMED. J Geophys Res, 114: D23103

    Google Scholar 

  • Xu J Y, Smith A K, Jiang G Y, et al. 2010a. Seasonal variation of the hough modes of the diurnal component of ozone heating evaluated from aura microwave limb sounder observations. J Geophys Res, 115: D10110

    Google Scholar 

  • Xu J Y, Smith A K, Jiang G Y, et al. 2010b. Strong longitudinal variations in the OH nightglow. Geophys Res Lett, 37: L21801

    Google Scholar 

  • Xu J Y, Smith A K, Jiang G Y, et al. 2012a. Features of the seasonal variation of the semidiurnal, terdiurnal and 6-h components of ozone heating evaluated from Aura/MLS observations. Ann Geophys, 30: 259–281

    Google Scholar 

  • Xu J Y, Gao H, Smith A K, et al. 2012b. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region. J Geophys Res, 117: D02301

    Google Scholar 

  • Xu J Y, Wang W B, Gao H. 2013a. The longitudinal variation of the daily mean thermospheric mass density. J Geophys Res-Space, 118: 515–523

    Google Scholar 

  • Xu J Y, Smith A K, Wang W B, et al. 2013b. An observational and theoretical study of the longitudinal variation in neutral temperature induced by aurora heating in the lower thermosphere. J Geophys Res-Space, 118: 7410–7425

    Google Scholar 

  • Xu J Y, Smith A K, Liu M H, et al. 2014. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in the stratosphere and lower mesosphere. J Geophys Res-Atmos, 119: 471–489

    Google Scholar 

  • Xu J S, Li X J, Liu Y W, et al. 2014. TEC differences for the mid-latitude ionosphere in both sides of the longitudes with zero declination. Adv Space Res, doi: dx.doi.org/10.1016/j.asr.2013.01.010

    Google Scholar 

  • Xue X H, Wan W X, Xiong J G, et al. 2007. Diurnal tides in mesosphere/low-thermosphere during 2002 at Wuhan (30.6°N, 114.4°E) using canonical correlation analysis. J Geophys Res, 112: D06104

    Google Scholar 

  • Xue X H, Wan W X, Xiong J G, et al. 2008. The characteristics of the semi-diurnal tides in mesosphere/low-thermosphere (MLT) during 2002 at Wuhan (30.6°N, 114.4°E)-Using canonical correlation analysis technique. Adv Space Res, 41: 1415–1422

    Google Scholar 

  • Xue X H, Dou X K, Lei J H, et al. 2013. Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies. J Geophys Res-Space, 118: 2409–2418

    Google Scholar 

  • Yee J H, Cameron G E, Kusnierkiewicz D Y. 1999. Overview of TIMED. Proc SPIE, 3756: 244–254

    Google Scholar 

  • Yi F, Zhang S D, Yue X C, et al. 2008. Some ubiquitous features of the mesospheric Fe and Na layer borders from simultaneous and commonvolume Fe and Na lidar observations. J Geophys Res, 113: A04S91

    Google Scholar 

  • Yi F, Yu C M, Zhang S D, et al. 2009. Seasonal variations of the nocturnal mesospheric Na and Fe layers at 30°N. J Geophys Res, 114: D01301

    Google Scholar 

  • Yi F, Zhang S D, Yu C M, et al. 2013. Simultaneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region. J Atmos Sol-Terr Phy, 102: 172–184

    Google Scholar 

  • Yu J R, She C Y. 1993. Lidar-observed temperature structures and gravitywave perturbations of the mesopause region in the springs of 1990–1992 over Fort Collins, CO. Appl Phys B-Photo, 57: 231–238

    Google Scholar 

  • Yu Y, Wan W X, Ning B Q, et al. 2013. Tidal wind mapping from observations of a meteor radar chain in december 2011. J Geophys Res-Space, 118: 2321–2332

    Google Scholar 

  • Yuan W H, Xu J Y, Ma R P, et al. 2010. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China. Chin Sci Bull, 55: 4046–4051

    Google Scholar 

  • Yuan W, Liu X, Xu J Y, et al. 2013. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07. Ann Geophys, 31: 1365–1378

    Google Scholar 

  • Zhang S D, Yi F, Huang C M, et al. 2010. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data. Ann Geophys, 28: 1065–1074

    Google Scholar 

  • Zhang S D, Yi F, Huang C M, et al. 2012. High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J Geophys Res, 117: D02103

    Google Scholar 

  • Zhang S D, Yi F, Huang C M, et al. 2013. Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U.S. radiosonde data. J Geophys Res-Atmos, 118: 7750–7764

    Google Scholar 

  • Zhang Y, Xiong J G, Liu L B, et al. 2012. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J Geophys Res, 117: D21101, doi:10.1029/2012JD017676

    Google Scholar 

  • Zhao B Q, Wan W X, Liu L B, et al. 2008. Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day. J Geophys Res, 113: A11302

    Google Scholar 

  • Zhao B Q, Wan W X, Reinisch B, et al. 2011a. Features of the F3 layer in the low-latitude ionosphere at sunset. J Geophys Res, 116: A01313

    Google Scholar 

  • Zhao B Q, Wan W X, Yue X A, et al. 2011b. Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/FORMOSAT-3. Geophys Res Lett, 38: L02101

    Google Scholar 

  • Zhao B Q, Wang M, Wang Y G, et al. 2013. East-west differences infregion electron density at midlatitude: Evidence from the far east region. J Geophys Res-Space, 118: 542–553

    Google Scholar 

  • Zhao G X, Liu L B, Ning B Q, et al. 2005a. The terdiurnal tide in the mesosphere and lower thermosphere over wuhan (30°N, 114°E). Earth Planets Space, 57: 393–398

    Google Scholar 

  • Zhao G X, Liu L B, Wan W X, et al. 2005b. Seasonal behavior of meteor radar winds over wuhan. Earth Planets Space, 57: 61–70

    Google Scholar 

  • Zhao L, Chen J S, Ding Z H, et al. 2012. First observations of tidal oscillations by an MF radar over Kunming (25.6°N 103.8°E). J Atmos Sol-Terr Phy, 78–79: 44–52

    Google Scholar 

  • Zhu Y J, Xu J Y, Yuan W, et al. 2012. First experiment of spectrometric observation of hydroxyl emission and rotational temperature in the mesopause in China. Sci China Tech Sci, 55: 1312–1318

    Google Scholar 

  • Zuo X M, Wan W X. 2008. Planetary wave oscillations in sporadic E layer occurrence at Wuhan. Earth Planets Space, 60: 647–652

    Google Scholar 

  • Zuo X M, Wan W X, Zhao G X. 2009. An attempt to infer information on planetary wave by analyzing sporadic E layers observations. Earth Planets Space, 61: 1185–1190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiXing Wan.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, W., Xu, J. Recent investigation on the coupling between the ionosphere and upper atmosphere. Sci. China Earth Sci. 57, 1995–2012 (2014). https://doi.org/10.1007/s11430-014-4923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4923-3

Keywords