Science China Earth Sciences

, Volume 57, Issue 10, pp 2317–2329 | Cite as

A multi-resolution global land cover dataset through multisource data aggregation

  • Le Yu
  • Jie Wang
  • XueCao Li
  • CongCong Li
  • YuanYuan Zhao
  • Peng Gong
Research Paper Special Topic: Remote Sensing and Global Change


Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover mapping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observation and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map—FROM-GLC-agg (Aggregation). It was post-processed using additional coarse resolution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion aggregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subsequently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.


spatial aggregation Landsat MODIS biodiversity climate change multi-resolution majority vote 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11430_2014_4919_MOESM1_ESM.pdf (225 kb)
Supplementary material, approximately 224 KB.


  1. Arino O, Bicheron P, Achard F, et al. 2008. GLOBCOVER The most detailed portrait of Earth. ESA Bull-Euro Space Agency, 136: 24–31Google Scholar
  2. Bartholome E, Belward A S. 2005. GLC2000: A new approach to global land cover mapping from Earth observation data. Int J Remote Sens, 26: 1959–1977CrossRefGoogle Scholar
  3. Bontemps S, Defourny P, Bogaert E V, et al. 2010. GLOBCOVER2009 Products Description and Validation Report. Google Scholar
  4. Bontemps S, Herold M, Kooistra L, et al. 2012. Revisiting land cover Biogesciences, 9: 2145–2157CrossRefGoogle Scholar
  5. Carroll M L, DiMiceli C M, Sohlberg R A, et al. 2004. 250 m MODIS Normalized Difference Vegetation Index, 250ndvi28920033435, Collection 4. Maryland: University of MarylandGoogle Scholar
  6. DeFries R S, Townshend J R G. 1994. NDVI-derived land cover classification at a global scale. Int J Remote Sens, 15: 3567–3586CrossRefGoogle Scholar
  7. Elvidge C D, Tuttle B T, Suttle P C, et al. 2007. Global distribution and density of constructed impervious surfaces. Sensor, 7: 1962–1979CrossRefGoogle Scholar
  8. Franks S, Masek J G, Headley R M K, et al. 2009. Large area scene selection interface (LASSI): Methodology of selecting Landsat imagery for the Global Land Survey 2005. Photogramm Eng Remote Sens, 75: 1287–1296CrossRefGoogle Scholar
  9. Friedl M A, Sulla-Menashe D, Tan B, et al. 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens Environ, 114: 168–182CrossRefGoogle Scholar
  10. Fritz S, You L, Bun A, et al. 2011. Cropland for sub-Saharan Africa: a synergistic approach using five land cover data sets. Geophys Res Lett, 38: L04404CrossRefGoogle Scholar
  11. Gardner R H, Lookingbill T R, Townsend P A, et al. 2008. A New Approach for Rescaling Land Cover Data. Landsc Ecol, 23: 513–526CrossRefGoogle Scholar
  12. Gong P, Howarth P J. 1990. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm Eng Remote Sens, 56: 67–73Google Scholar
  13. Gong P, Howarth P J. 1992a. Frequency-based contextual classification and grey-level vector reduction for land-use identification. Photogramm Eng Remote Sens, 58: 423–437Google Scholar
  14. Gong P, Howarth P J. 1992b. Land-use classification of SPOT HRV data using a cover-frequency method. Int J Remote Sens, 13: 1459–1471CrossRefGoogle Scholar
  15. Gong P, Liang S, Carlton E, et al. 2012. Urbanization and health in China. Lancet, 379: 843–852CrossRefGoogle Scholar
  16. Gong P, Wang J, Yu L, et al. 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens, 34: 2607–2654CrossRefGoogle Scholar
  17. Gupta R K, Prasan T S, Krishna R, et al. 2000. Problems in upscaling of high resolution remote sensing data to coarse spatial resolution over land surface. Adv Space Res, 26: 1111–1121CrossRefGoogle Scholar
  18. Hansen M C, DeFries R S, Townshend J R G, et al. 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 21: 1331–1364CrossRefGoogle Scholar
  19. Hansen M C, Potapov P V, Moore R, et al. 2013. High-resolution global maps of 21s-centrury forest cover change. Science, 342: 850–853CrossRefGoogle Scholar
  20. He H S, Ventura S J, Mladenoff D J. 2002. Effects of spatial aggregation approaches on classified satellite imagery. Int J Geogr Inf Sci, 16: 93–109CrossRefGoogle Scholar
  21. Hijmans R J, Cameron S E, Parra J L, et al. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25: 1965–1978CrossRefGoogle Scholar
  22. Jensen J R, Zown D C. 1999. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogramm Eng Remote Sens, 65: 611–622Google Scholar
  23. Jung M, Henkel K, Herold M, et al. 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ, 101: 534–553CrossRefGoogle Scholar
  24. Kitron U, Clennon J A, Cecere M C, et al. 2006. Upscale or downscale: applications of fine scale remotely sensed data to Chagas disease in Argentina and schistosomiasis in Kenya. Geospatial Health, 1: 49–58Google Scholar
  25. Kovalskyy V, Roy D P. 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens Environ, 130: 280–293CrossRefGoogle Scholar
  26. Liang L, Xu B, Chen Y L, et al. 2010. Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission. PLoS One, 5: e13575CrossRefGoogle Scholar
  27. Loveland T R, Reed B C, Brown J F, et al. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens, 21: 1303–1330CrossRefGoogle Scholar
  28. Matthews E. 1983. Global vegetation and land use: New high resolution data bases for climate studies. J Clim Appl Meteorol, 22: 474–487CrossRefGoogle Scholar
  29. Mauser W, Schadlich S. 1998. Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data. J Hydrol, 212–213: 250–267CrossRefGoogle Scholar
  30. Moody A, Woodcock C E. 1994. Scale-dependent errors in the estimation of landcover proportions—Implications for global land-cover datasets. Photogramm Eng Remote Sens, 60: 585–594Google Scholar
  31. Moody A, Woodcock C E. 1995. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landsc Ecol, 10: 363–379CrossRefGoogle Scholar
  32. Olson D M, Dinerstein E, Wikramanayake E D, et al. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience, 51: 933–938CrossRefGoogle Scholar
  33. Olson J S, Watts J A. 1982. Major World Ecosystem Complex Map Oak Ridge. TN: Oak Ridge National LaboratoryGoogle Scholar
  34. Quattrochi D A, Goodchild M F. 1997. Scale in Remote Sensing and GIS, 1–72. Boca Raton, FL: LewisGoogle Scholar
  35. Raj R, Hamm N, Kant Y. 2013. Analysis the effect of different aggregation approach on remotely sensed data. Int J Remote Sens, 34: 4900–4916CrossRefGoogle Scholar
  36. Ramirez-Villegas J, Jarvis A. 2010. Downscaling global circulation model outputs: The Delta method decision and policy analysis working paper No.1. Available: WWW document] URL: [Accessed: 2 January 2013]Google Scholar
  37. Sexton J O, Song, X, Feng M, et al. 2013. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS Vegetation Continuous Fields with lidar-based estimates of error. Int J Dig Earth, 6: 427–448CrossRefGoogle Scholar
  38. Schneider A, Friedl M A, Potere D. 2009. A new map of global urban extent from MODIS data. Environ Res Lett, 4: 044003CrossRefGoogle Scholar
  39. Schneider A, Friedl M A, Potere D. 2010. Monitoring urban areas globally using MODIS 500 m data: New methods and datasets based on urban ecoregions. Remote Sens Environ, 114: 1733–1746CrossRefGoogle Scholar
  40. Small C. 2005. A global analysis of urban reflectance. Int J Remote Sens, 95: 335–344Google Scholar
  41. Sterling S, Ducharne A. 2008. Comprehensive data set on global land cover change for land surface model applications. Glob Biogeochem Cycle, 22: GB3017CrossRefGoogle Scholar
  42. Tateishi R, Uriyangqai B, Al-Bilbisi H, et al. 2011. Production of global land cover data—GLCNMO. Int J Dig Earth, 4: 22–49CrossRefGoogle Scholar
  43. Turner M G, Dale V H, Gardner, R H. 1989a. Predicting across scales: Theory development and testing. Landsc Ecol, 3: 235–252Google Scholar
  44. Turner M G, O’Neill R V, Gardner R H, et al. 1989b. Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol, 3: 153–162CrossRefGoogle Scholar
  45. Vancutsem C, Marinho E, Kayitakire F, et al. 2013. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sensing, 5: 19–41CrossRefGoogle Scholar
  46. Verburg P H, Neumann K, Nol L. 2011. Challenges in using land use and land cover data for global change studies. Glob Change Biol, 19: 974–989CrossRefGoogle Scholar
  47. Wang J, Li C, Yu L, et al. 2014. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution, ISPRS-J Photogramm Remote Sens, doi:  10.1016/j.isprsjprs.2014.03.007 Google Scholar
  48. Wang L, Gong P, Ying Q, et al. 2010. Settlement extraction over North China Plain with Landsat and Beijing-1 data using an improved watershed segmentation algorithm. Int J Remote Sens, 31: 1411–1426CrossRefGoogle Scholar
  49. Wang L, Li C, Ying Q, et al. 2012. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin Sci Bull, 57: 2802–2812CrossRefGoogle Scholar
  50. Wessel P, Smith W H F. 1996. A global self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res, 101: 8741–8743CrossRefGoogle Scholar
  51. Wilby R L, Wigley T M L. 1997. Downscaling general circulation model outputs: A review of methods and limitations. Prog Phys Geogr, 21: 530–548CrossRefGoogle Scholar
  52. Wilson M F, Henderson-Sellers A. 1985. A global archive of land cover and soils data for use in general circulation climate models. Int J Climatol, 5: 119–143CrossRefGoogle Scholar
  53. Woodcock C E, Strahler A H. 1987. The factor of scale in remote sensing. Remote Sens Environ. 21: 311–332CrossRefGoogle Scholar
  54. Yu L, Holden E J, Dentith M C, et al. 2012. Towards the automatic selection of optimal seam line locations when merging optical remote sensing images. Int J Remote Sens, 33: 1000–1014CrossRefGoogle Scholar
  55. Yu L, Wang J, Gong P. 2013a. Improving 30 meter global land cover map FROM-GLC with time series MODIS and auxiliary datasets: A segmentation based approach. Int J Remote Sens, 34: 5851–5867CrossRefGoogle Scholar
  56. Yu L, Wang J, Clinton N, et al. 2013b. FROM-GC: 30 m global cropland extent derived through multi-source data integration. Int J Dig Earth, 6: 521–533CrossRefGoogle Scholar
  57. Zhao S Q, Liu S, Li Z, et al. 2010. A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA. Biogeosciences, 7: 71–80CrossRefGoogle Scholar
  58. Zhong L, Gong P, Biging G S. 2012. Phenology-based crop classification algorithm and its implications on agriculture water use assessments in California’s Central Valley. Photogramm Eng Remote Sens, 78: 799–819CrossRefGoogle Scholar
  59. Zhong L, Gong P, Biging G S. 2014. Efficient corn and soybean mapping with temporal extendability: A muti-year experiment using Landsat imagery. Remote Sens Environ, 140: 1–13CrossRefGoogle Scholar
  60. Zhu P, Gong D. 2014. Suitability mapping of global wetland areas and validation with remotely sensed data. Sci China Earth Sci, doi:  10.1007/s11430-014-4925-1 Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Le Yu
    • 1
  • Jie Wang
    • 2
  • XueCao Li
    • 1
  • CongCong Li
    • 3
  • YuanYuan Zhao
    • 1
  • Peng Gong
    • 1
    • 2
    • 4
  1. 1.Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System ScienceTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Remote Sensing Science, and College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  4. 4.Joint Center for Global Change StudiesBeijingChina

Personalised recommendations