Skip to main content
Log in

The electrical conductivity of eclogite in Tibet and its geophysical implications

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The electrical conductivity of Tibetan eclogite was investigated at pressures of 1.5–3.5 GPa and temperatures of 500–803 K using impedance spectroscopy within a frequency range of 10−1–106 Hz. The electrical conductivity of eclogite increases with increasing temperature (which can be approximated by the Arrhenius equation), and is weakly affected by pressure. At each tested pressure, the electrical conductivity is weakly temperature dependent below ∼650 K and more strongly temperature dependent above ∼650 K. The calculated activation energies and volumes are 44±1 kJ/mol and −0.6±0.1 cm3/mol for low temperatures and 97±3 kJ/mol and −1.2±0.2 cm3/mol for high temperatures, respectively. When applied to the depth range of 45–100 km in Tibet, the laboratory data give conductivities on the order of 10−1.5–10−4.5 S/m, within the range of geophysical conductivity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D L. 2007. The eclogite engine: Chemical geodynamics as a Galileo thermometer. In: Foulger G R, Jurdy D M, eds. Plates, Plumes, and Planetary Processes. Geol Soc Am Spec Pap, 430: 47–64

    Article  Google Scholar 

  • Bagdassarov N, Batalev V, Egorova V. 2011. State of lithosphere beneath Tien Shan from petrology and electrical conductivity of xenoliths. J Geophys Res, 116: B01202

    Google Scholar 

  • Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat Geosci, 358-362

  • Chen L S, Booker J R, Jones A G, et al. 1996. Electrically conductive crust in southern Tibet from in-depth magnetotelluric surveying. Science, 274: 1694–1696

    Article  Google Scholar 

  • Cherniak D J, Dimanov A. 2010. Diffusion in pyroxene, mica and amphibole. In: Zhang Y, Cherniak D J, eds. Diffusion in Minerals and Melts. Rev Mineral Geochem, 72: 641–690

    Article  Google Scholar 

  • Coleman R G, Lee L D, Beaty L B. 1965. Eclogites and eclogites: Their differences and similarities. Geol Soc Am Bull, 76: 483–508

    Article  Google Scholar 

  • Farver J R. 2010. Oxygen and hydrogen diffusion in minerals. In: Zhang Y, Cherniak D J, eds. Diffusion in Minerals and Melts. Rev Mineral Geochem, 72: 447–507

    Article  Google Scholar 

  • Ganguly J. 2010. Cation diffusion kinetics in aluminosilicate garnets and geological applications. In: Zhang Y, Cherniak D J, eds. Diffusion in Minerals and Melts. Rev Mineral Geochem, 72: 559–601

    Article  Google Scholar 

  • Giese P, Scheuber E, Schilling F, et al. 1999. Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. J S Am Earth Sci, 12: 201–220

    Article  Google Scholar 

  • Hacker B R, Peacock S M, Abers G A, et al. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res, 108: ESE 11–8

    Google Scholar 

  • Huebner J S, Dillenburg R G. 1995. Impedance spectra of hot, dry silicate minerals and rock: Qualitative interpretation of spectra. Am Mineral, 80: 46–64

    Google Scholar 

  • Karato S, Wang D J. Electrical conductivity of minerals and rocks. In: Karato S, eds. Physics and Chemistry of the Deep Earth. New York: Wiley-Blackwell. in press

  • Kirby S, Engdahl R E, Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. Geophys Monogr Ser, 96: 195–214

    Google Scholar 

  • Laštovičková M, Parchomenko E I. 1976. The electric properties of eclogites from the Bohemian Massif under high temperatures and pressures. Pure Appl Geophys, 114: 451–460

    Article  Google Scholar 

  • Li S, Unsworth M J, Booker J R, et al. 2003. Partial melt or aqueous fluid in the mid-crust of southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys J Int, 153: 289–304

    Article  Google Scholar 

  • Nelson K D, Zhao W J, Brown L D, et al. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH result. Science, 274: 1684–1688

    Article  Google Scholar 

  • Paterson M S. 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral, 105: 20–29

    Google Scholar 

  • Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939

    Article  Google Scholar 

  • Roberts J J, Tyburczy J A. 1991. Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res, 96: 16205–16222

    Article  Google Scholar 

  • Roberts J J, Tyburczy J A. 1993. Impedance spectroscopy of single and polycrystaIline olivine: Evidence for grain boundary transport. Phys Chem Miner, 20: 19–26

    Article  Google Scholar 

  • Romano C, Poe B T, Kreidie N, et al. 2006. Electrical conductivities of pyrope-almandine garnets up to 19 GPa and 1700°C. Am Miner, 91: 1371–1377

    Article  Google Scholar 

  • Sajeev K, Windleyb B F, Connollyc J A D, et al. 2009. Retrogressed eclogite (20 kbar, 1020°C) from the Neoproterozoic Palghat-Cauvery suture zone, southern India. Precambrian Res, 171: 23–36

    Article  Google Scholar 

  • Schmidbauer E, Kunzmann T H, Fehr T H, et al. 2000. Electrical resistivity and 57Fe Mössbauer spectra of Fe-bearing calcic amphiboles. Phys Chem Miner, 27: 347–356

    Article  Google Scholar 

  • Schock R N, Duba A, Shankland T J. 1989. Electric conduction in olivine. J Geophys Res, 94: 5829–5839

    Article  Google Scholar 

  • Searle M P, Elliott J R, Phillips R J, et al. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. J Geol Soc, 168: 633–672

    Article  Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Article  Google Scholar 

  • Tolland H G. 1973. Mantel conductivity and electrical properties of garnet, mica and amphibole. Nat Phys Sci, 241: 35–36

    Article  Google Scholar 

  • Wang D J, Liu C Q, Li H P, et al. 2002. Impedance spectra of hot, dry gabbro at high temperature and pressure. Prog Nat Sci, 5: 397–400

    Google Scholar 

  • Wang D J, Mookherjee M, Xu Y S, et al. 2006. The effect of water on the electrical conductivity of olivine. Nature, 443: 977–980

    Article  Google Scholar 

  • Wang D J, Li H P, Yi L, et al. 2008. The electrical conductivity of upper mantle rocks: Water content in the upper mantle. Phys Chem Miner, 35: 157–162

    Article  Google Scholar 

  • Wang D J, Li H P, Yi L, et al. 2010. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J Geophys Res, 115: 10

    Google Scholar 

  • Wang D J, Guo Y X, Yu Y J, et al. 2012. Electrical conductivity of amphibole-bearing rocks: Influence of dehydration. Contrib Mineral Petrol, 164: 17–25

    Article  Google Scholar 

  • Wei W B, Unsworth M, Jones A, et al. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292: 716–719

    Article  Google Scholar 

  • Wei W B, Jin S, Ye G F, et al. 2006. Features of the faults in center and north Tibetan plateau: Based on results of INDEPTH (III)-MT. Earth Sci J Chin Univ Geosci, 31: 257–265

    Google Scholar 

  • Xu Y S, Shankland T J, Duba A G. 2000. Pressure effect on electrical conductivity of mantle olivine. Phys Earth Planet Inter, 118: 149–161

    Article  Google Scholar 

  • Yang J S, Xu Z Q, Li Z L, et al. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? J Asian Earth Sci, 34: 76–89

    Article  Google Scholar 

  • Yang X Z, Keppler H, McCammon C, et al. 2011. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res, 116: 15p

  • Yoshinoa T, Nishib M, Matsuzakia T, et al. 2008. Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter, 170: 193–200

    Article  Google Scholar 

  • Yoshino T. 2010. Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys, 31:163–206

    Article  Google Scholar 

  • Zhai Q G, Zhang R Y, Jahn B M, et al. 2011. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path. Lithos, 125: 173–189

    Article  Google Scholar 

  • Zhang K J, Cai J X, Zhang Y X, et al. 2006. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth Plan Sci Lett, 245: 722–729

    Article  Google Scholar 

  • Zhao G Z, Chen X B, Wang L F, et al. 2008. Evidence of crustal ‘channel flow’ in eastern margin of Tibet plateau from MT measurements. Chin Sci Bull, 53: 1887–1893

    Article  Google Scholar 

  • Zhao G Z, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology, 40:1139–1142

    Article  Google Scholar 

  • Zhu M X, Xie H S, Guo J, et al. 2001. Impedance spectroscopy analysis on electrical properties of serpentine at high pressure and high temperature. Sci China, Ser D-Earth Sci, 44: 336–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DuoJun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, D., Shi, Y. et al. The electrical conductivity of eclogite in Tibet and its geophysical implications. Sci. China Earth Sci. 57, 2071–2078 (2014). https://doi.org/10.1007/s11430-014-4876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4876-6

Keywords

Navigation