Skip to main content
Log in

The gravity field and crustal thickness of Venus

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The gravity and topography of Venus obtained from observations of the Magellan mission, as well as the gravity and topography from our numerical mantle convection model, are discussed in this paper. We used the hypothesis that the geoid of degrees 2–40 is produced by sublithospheric mantle density anomalies that are associated with dynamical process within the mantle. We obtained the model dynamical admittance (the geoid topography ratio based on a convection model) by a numerical simulation of the Venusian mantle convection, and used it to correct the dynamical effect in the calculation of crustal thickness. After deducting the dynamical effect, the thickness of the Venusian crust is presented. The results show that the gravity and topography are strongly correlated with the Venusian mantle convection and the Venusian crust has a significant influence on the topography. The Venusian crustal thickness varies from 28 to 70 km. Ishtar Terra, and Ovda Regio and Thetis Regio in western Aphrodite Terra have the highest crustal thickness (larger than 50 km). The high topography of these areas is thought to be supported by crustal compensation and our results are consistent with the hypothesis that these areas are remnants of ancient continents. The crustal thickness in the Beta, Themis, Dione, Eistla, Bell, and Lada regiones is thin and shows less correlation with the topography, especially in the Atla and Imdr regiones in the eastern part of Aphrodite Terra. This is consistent with the hypothesis that these highlands are mainly supported by mantle plumes. Compared with the crustal thickness calculated with the dynamical effect, our results are more consistent with the crust evolution and internal dynamical process of Venus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson F S, Smrekar S E. 2006. Global mapping of crustal and lithospheric thickness on Venus. J Geophys Res, 111: E08006, doi: 10.1029/2004JE002395

    Google Scholar 

  • Ansan V, Blondel P. 1996. Formation and evolution of the westernmost corona of Aphrodite Terra, Venus. Plan Space Sci, 44: 833–841

    Article  Google Scholar 

  • Arkani-Hamed J. 1996. Analysis and interpretation of the surface topography and gravitational potential of Venus. J Geophys Res, 101: 4711–4724

    Article  Google Scholar 

  • Banerdt W B. 1986. Support of long-wavelength loads on Venus and implications for internal structure. J Geophys Res, 91: 403–419

    Article  Google Scholar 

  • Black M T, Zuber M T, McAdoo D C. 1991. Comparison of observed and predicted gravity profiles over Aphrodite Terra, Venus. J Geophys Res, 96: 301–315

    Article  Google Scholar 

  • Crumpler L S. 1990. Eastern Aphrodite Terra on Venus: Characteristics, structure, and mode of origin. Earth Moon Planets, 50/51: 343–388

    Article  Google Scholar 

  • Fang J. 1999. Golobal crustal and lithospheric thickness inversed by using satellite gravtiy data. Crustal Deform Earthq, 19: 26–31

    Google Scholar 

  • Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J Geophys Res, 90: 12623–12632

    Article  Google Scholar 

  • Gao X, Wang W M, Yao Z X. 2005. Crustal structure of China mainland and its adjacent regions. Chinese J Geophys, 48: 591–601

    Google Scholar 

  • Grimm R E. 1994. The deep-structure of Venusian plateau highlands. Icarus, 112: 89–103

    Article  Google Scholar 

  • Hager B H, Richards M A. 1989. Long-wavelength variations in Earth’s geoid: Physical models and dynamical implications. Phil Trans R Soc London Ser A, 328: 309–327

    Article  Google Scholar 

  • Haxby W F, Turcotte D L. 1978. On isostatic geoid anomalies. J Geophys Res, 83: 5473–5478

    Article  Google Scholar 

  • Herrick R R, Bills B G, Hall S A. 1989. Variations in effective compensation depth across Aphrodite Terra, Venus. Geophys Res Lett, 16: 543–546

    Article  Google Scholar 

  • Huang J P, Fu R S, Xu P, et al. 2006. Inversion of gravity and topography data for the crust thickness of China and its adjacency. Acta Seism Sin, 28: 250–258

    Google Scholar 

  • Huang J S, Yang A, Zhong S J. 2013. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet Sci Lett, 362: 207–214

    Article  Google Scholar 

  • Ivanov M A, Head J W. 2010. The Lada Terra rise and Quetzalpetlatl Corona: A region of long-lived mantle upwelling and recent volcanic activity on Venus. Plan Space Sci, 58: 1880–1894

    Article  Google Scholar 

  • Kiefer W S, Hager B H. 1991. A mantle plume model for the equaorial highlands of Venus. J Geophys Res, 96: 20947–20966

    Article  Google Scholar 

  • Kiefer W S, Richards M A, Hager B H. 1986. A dynamic model of Venus’s gravity field. Geophys Res Lett, 13: 14–17

    Article  Google Scholar 

  • Konopliv A S, Banerdt W B, Sjogren W L. 1999. Venus gravity: 180th degree and order model. Icarus, 139: 3–18

    Article  Google Scholar 

  • Kucinskas A B, Turcotte D L. 1994. Isostatic compensation of equatorial highlands on Venus. Icarus, 112: 104–116

    Article  Google Scholar 

  • Kucinskas A B, Turcotte D L, ArkaniHamed J. 1996. Isostatic compensation of Ishtar Terra, Venus. J Geophys Res, 101: 4725–4736

    Article  Google Scholar 

  • Leftwich T E, von Frese R R B, Kim H R, et al. 1999. Crustal analysis of Venus from Magellan satellite observations at Atalanta Planitia, Beta Regio, and Thetis Regio. J Geophys Res, 104: 8441–8462

    Article  Google Scholar 

  • Lemoine F G, Kenyon S C, Factor J K, et al. 1998. The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA Goddard Space Flight Center, NASA/TP-1998-206861, Greenbelt, MD 20771, USA. http://cddis.nasa.gov/926/egm96/getit.html

    Google Scholar 

  • Mckenzie D. 1994. The Relationship between topography and gravity on Earth and Venus. Icarus, 112: 55–88

    Article  Google Scholar 

  • Mooney W D, Laske G, Masters T G. 1998. CRUST 5.1: A global crustal model at 5°×5°. J Geophys Res, 103: 727–747

    Article  Google Scholar 

  • Ockendon J R, Turcotte D L. 1977. On the gravitational potential and field anomalies due to thin mass layers. Geophys J R Astr Soc, 48: 479–492

    Article  Google Scholar 

  • Panasyuk S V, Hager B H. 2000. Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties. J Geophys Res, 105: 28199–28209

    Article  Google Scholar 

  • Pari G. 2001. Crust 5.1-based inference of the Earth’s dynamic surface topography: Geodynamic implications. Geophys J Int, 144: 501–516

    Article  Google Scholar 

  • Parker R L. 1972. The rapid calculation of potential anomalies. Geophys J R Astr Soc, 31: 447–455

    Article  Google Scholar 

  • Pauer M, Fleming K, Čadek O. 2006. Modeling the dynamic component of the geoid and topography of Venus. J Geophys Res, 111: E11012, doi: 10.1029/2005JE002511

    Article  Google Scholar 

  • Rappaport N J, Konopliv A S, Kucinskas A B, et al. 1999. An improved 360 degree and order model of Venus topography. Icarus, 139: 19–31

    Article  Google Scholar 

  • Ricard Y, Fleitout L, Froidevaux C. 1984. Geoid heights and lithospheric stresses for a dynamic Earth. Ann Geophys, 2: 267–286

    Google Scholar 

  • Richards M A, Hager B H. 1984. Geoid anomalies in a dynamic Earth. J Geophys Res, 89: 5987–6002

    Article  Google Scholar 

  • Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Simons F J, Dahlen F A, Wieczorek M A. 2006. Spatiospectral concentration on a sphere. Siam Rev, 48: 504–536

    Article  Google Scholar 

  • Simons M. 1996. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Earth and Venus. Doctoral Dissertation. Massachusetts: Massachusetts Institute of Technology

    Google Scholar 

  • Simons M, Hager B H, Solomon S C. 1994. Global variations in the geoid/topography admittance of Venus. Science, 264: 798–803

    Article  Google Scholar 

  • Simons M, Solomon S C, Hager B H. 1997. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus. Geophys J Int, 131: 24–44

    Article  Google Scholar 

  • Smrekar S E, Brown N. 2012. Lada Terra: A’ new’ hotspot on Venus. Abstract P11D-1846 presented at 2012 Fall Meeting, AGU, San Francisco, Calif, 3–7 Dec

    Google Scholar 

  • Smrekar S E, Phillips R J. 1991. Venusian highlands: Geoid to topography ratios and their implications. Earth Planet Sci Lett, 107: 582–597

    Article  Google Scholar 

  • Smrekar S E, Stofan E R, Mueller N, et al. 2010. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science, 328: 605–608

    Article  Google Scholar 

  • Solomon S C, Smrekar S E, Bindschadler D L, et al. 1992. Venus tectonics: An overview of Magellan observations. J Geophys Res, 97: 13119–13255

    Google Scholar 

  • Steinberger B, Werner S C, Torsvik T H. 2010. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus, 207: 564–577

    Article  Google Scholar 

  • Stofan E R, Smrekar S E, Bindschadler D L, et al. 1995. Large topographic rises on Venus: Implications for mantle upwelling. J Geophys Res, 100: 23317–23327

    Article  Google Scholar 

  • Tenzer R, Hamayun K, Vajda P. 2009. Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res, 114: B05408, doi: 10.1029/2008JB006016

    Google Scholar 

  • Turcotte D L, Willemann R J, Haxby W F, et al. 1981. Role of membrane stresses in the support of planetary topography. J Geophys Res, 86: 3951–3959

    Article  Google Scholar 

  • Vezolainen A V, Solomatov V S, Basilevsky A T, et al. 2004. Uplift of Beta Regio: Three-dimensional models. J Geophys Res, 109: E08007, doi: 10.1029/2004JE002259

    Google Scholar 

  • Wieczorek M A. 2007. Gravity and topography of the terrestrial planets. Treatise on Geophysics, 10: 165–206, doi: 10.1016/B978-044452748-6/00156-5

    Article  Google Scholar 

  • Wieczorek M A, Phillips R J. 1997. The structure and compensation of the lunar highland crust. J Geophys Res, 102: 10933–10943

    Article  Google Scholar 

  • Wieczorek M A, Phillips R J. 1998. Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J Geophys Res, 103: 1715–1724

    Article  Google Scholar 

  • Wieczorek M A, Simons F J. 2005. Localized spectral analysis on the sphere. Geophys J Int, 162: 655–675

    Article  Google Scholar 

  • Willemann R J, Turcotte D L. 1981. Support of topographic and other loads on the moon and on the terrestrial planets. Proc Lunar Planet Sci Confer, 12B: 837–851

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinShui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Yang, A. & Huang, J. The gravity field and crustal thickness of Venus. Sci. China Earth Sci. 57, 2025–2035 (2014). https://doi.org/10.1007/s11430-014-4824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4824-5

Keywords

Navigation