Science China Earth Sciences

, Volume 57, Issue 5, pp 930–942 | Cite as

Causes and consequences of the Cambrian explosion

Research Paper Special Topic: Frontiers of Geobiology


The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla in the fossil record, divergence time, environmental changes, Gene Regulatory Networks, and ecological feedbacks. The first appearances of phyla in the fossil record are obviously diachronous but relatively abrupt, concentrated in the first three stages of the Cambrian period (541–514 Ma). The actual divergence time may be deep or shallow. Since the gene regulatory networks (GRNs) that control the development of metazoans were in place before the divergence, the establishment of GRNs is necessary but insufficient for the Cambrian explosion. Thus the Cambrian explosion required environmental triggers. Nutrient availability, oxygenation, and change of seawater composition were potential environmental triggers. The nutrient input, e.g., the phosphorus enrichment in the environment, would cause excess primary production, but it is not directly linked with diversity or disparity. Further increase of oxygen level and change of seawater composition during the Ediacaran-Cambrian transition were probably crucial environmental factors that caused the Cambrian explosion, but more detailed geochemical data are required. Many researchers prefer that the Cambrian explosion is an ecological phenomenon, that is, the unprecedented ecological success of metazoans during the Early Cambrian, but ecological effects need diverse and abundant animals. Therefore, the establishment of the ecological complexity among animals, and between animals and environments, is a consequence rather than a cause of the Cambrian explosion. It is no doubt that positive ecological feedbacks could facilitate the increase of biodiversity. In a word, the Cambrian explosion happened when environmental changes crossed critical thresholds, led to the initial formation of the metazoan-dominated ecosystem through a series of knock-on ecological processes, i.e., “ecological snowball” effects.


Cambrian explosion dGRNs Gondwana environmental changes ecological snowball 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamska M, Degnan B M, Green K, et al. 2011. What sponges can tell us about the evolution of developmental processes. Zoology, 114: 1–10CrossRefGoogle Scholar
  2. Aris-Brosou S, Yang Z. 2003. Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa. Mol Biol Evol, 20: 1947–1954CrossRefGoogle Scholar
  3. Baguñà J, Riutort M. 2004. The dawn of bilaterian animals: The case of acoelomorph flatworms. BioEssays, 26: 1046–1057CrossRefGoogle Scholar
  4. Balavoine G, de Rosa R, Adoutte A. 2002. Hox clusters and bilaterian phylogeny. Mol Phylogenet and Evol, 24: 137–147CrossRefGoogle Scholar
  5. Berner R A. 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am J Sci, 304: 438–453CrossRefGoogle Scholar
  6. Blair J E. 2009. Animals (Metazoa). In: Hedges S B, Kumar S, eds. The Timetree of Life. Oxford: Oxford University Press. 223–230Google Scholar
  7. Bottjer D J, Hagadorn J W, Dornbos S Q. 2000. The Cambrian substrate revolution. GSA Today, 10: 1–7Google Scholar
  8. Brasier M D, Lindsay J F. 2001. Did supercontinental amalgamation trigger the “Cambrian explosion”? In: Zhuralev A Y, Riding R. eds. The Ecology of the Cambrian Radiation. New York: Columbia University Press. 69–89Google Scholar
  9. Brennan S T, Lowenstein T K, Horita J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32: 473–476CrossRefGoogle Scholar
  10. Butterfield N J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23: 247–262Google Scholar
  11. Butterfield N J. 2001. Cambrian food webs. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell Science. 40–43CrossRefGoogle Scholar
  12. Butterfield N J. 2009. Oxygen, animals and oceanic ventilation: An alternative view. Geobiology, 7: 1–7CrossRefGoogle Scholar
  13. Campbell I H, Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci, 1: 554–558CrossRefGoogle Scholar
  14. Campbell I H, Squire R J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The second Great Oxidation Event. Geochim Cosmochim Acta, 74: 4187–4206CrossRefGoogle Scholar
  15. Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 106: 8123–8127CrossRefGoogle Scholar
  16. Canfield D E, Poulton S W, Knoll A H, et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949–952CrossRefGoogle Scholar
  17. Canfield D E, Poulton S W, Narbonne G M. 2007. Late Neopro terozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92–95CrossRefGoogle Scholar
  18. Carroll S B, Grenier J K, Weather S D. 2001. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Oxford: Blackwell Science. 1–214Google Scholar
  19. Catling D C, Glein C R, Zahnle K J, et al. 2005. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology, 5: 415–438CrossRefGoogle Scholar
  20. Chen J Y, Schopf J W, Bottjer D J, et al. 2007. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci USA, 104: 6289–6293CrossRefGoogle Scholar
  21. Cloud P E Jr. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 2: 322–350CrossRefGoogle Scholar
  22. Conway M, S. 2000. The Cambrian “explosion”: Slow-fuse or mega-tonnage? Proc Natl Acad Sci USA, 97: 4426–4429CrossRefGoogle Scholar
  23. Conway M S, Peel J S. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeont Pol, 53: 137–148CrossRefGoogle Scholar
  24. Davidson E H. 2010. Emerging properties of animal gene regulatory networks. Nature, 468: 911–920CrossRefGoogle Scholar
  25. Davidson E H, Erwin D H. 2006. Gene regulatory networks and the evolution of animal body plans. Science, 311: 796–800CrossRefGoogle Scholar
  26. Davidson E H, Erwin D H. 2009. An integrated view of Precambrian eumetazoan evolution. Cold Spring Harbor Symposia Quantitative Biol, 74: 65–80CrossRefGoogle Scholar
  27. Decker H, van Holde K E. 2011. Oxygen and the Evolution of Life. Heidelberg: Springer. 1–172CrossRefGoogle Scholar
  28. de Rosa R, Grenier J K, Andreeva T, et al. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399: 772–776CrossRefGoogle Scholar
  29. Dong X P, Bengtson S, Gostling N J, et al. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans. Palaeontology, 53: 1291–1314CrossRefGoogle Scholar
  30. Erwin D H. 2009. Early origin of the bilaterian developmental toolkit. Philos Trans R Soc Lond B Biol Sci, 364: 2253–2261CrossRefGoogle Scholar
  31. Erwin D H, Davidson E H. 2002. The last common bilaterian ancestor. Development, 129: 3021–3032Google Scholar
  32. Erwin, D H, Laflamme M, Tweedt S M, et al. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1901–1907CrossRefGoogle Scholar
  33. Erwin D H, Tweedt S. 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol Ecol, 26: 417–433CrossRefGoogle Scholar
  34. Fedonkin M A, Gehling J, Grey K, et al. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Baltimore: The Johns Hopkins University Press. 1–326Google Scholar
  35. Fedonkin M A, Waggoner B M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388: 868–871CrossRefGoogle Scholar
  36. Grimaldi D A, Engel M S, Nascibene P C. 2002. Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. Amer Mus Nat History, 3361: 1–71Google Scholar
  37. Han J, Kubota S, Uchida H, et al. 2010. Tiny sea anemone from the Lower Cambrian of China. Plos One, 5: e13276CrossRefGoogle Scholar
  38. Harcet M, Roller M, Cetkovic H, et al. 2010. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoan. Mol Biol Evol, 27: 2747–2756CrossRefGoogle Scholar
  39. Hay W W, Migdisov A, Balukhovsky A N, et al. 2006. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeogr Palaeoclimatol Palaeoecol, 240: 3–46CrossRefGoogle Scholar
  40. Hou X G, Aldridge R J, Bergstrom J, et al. 2004. The Cambrian Fossils of Chengjiang, China: The flowering of Early Animal Life. Oxford: Blackwell. 1–233Google Scholar
  41. Hou X G, Aldridge R J, Siveter D J, et al. 2011. An early Cambrian hemichordate zooid. Curr Biol, 21: 612–616CrossRefGoogle Scholar
  42. Howarth R W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann Rev Ecol Syst, 19: 89–110CrossRefGoogle Scholar
  43. Hua H, Chen Z, Yuan X L, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277–280CrossRefGoogle Scholar
  44. Huang D Y, Chen J Y, Vannier J, et al. 2004. Early Cambrian sipunculan worms from southwest China. Philos Trans R Soc Lond B Biol Sci, 271: 1671–1676CrossRefGoogle Scholar
  45. Knauth L P. 1998. Salinity history of the Earth’s early ocean. Nature, 395: 554–555CrossRefGoogle Scholar
  46. Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 219: 53–69CrossRefGoogle Scholar
  47. Knoll A H, Walter M R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356: 673–678CrossRefGoogle Scholar
  48. Kouchinsky A, Bengtson S, Runnegar B, et al. 2011. Chronology of early Cambrian biomineralization. Geol Mag, 149: 221–251CrossRefGoogle Scholar
  49. Landing E, English A, Keppie J D. 2010. Cambrian origin of all skeletonized metazoan phyla-Discovery of Earth’s oldest bryozoans (Upper Cambrian, southern Mexico). Geology, 38: 347–350CrossRefGoogle Scholar
  50. Larroux C, Fahey B, Liubicich D, et al. 2006. Developmental expression of transcription factor genes in a demosponge: Insight into the origins of metazoan multicellularity. Evol Dev, 8: 150–173CrossRefGoogle Scholar
  51. Levinton J S. 2001. Genetics, Paleontology, and Macroevolution. 2nd ed. Cambridge: Cambridge University Press. 1–617CrossRefGoogle Scholar
  52. Li Z X, Powell C M. 2001. An outline of the palaeongeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Sci Rev, 53: 237–277CrossRefGoogle Scholar
  53. Liu J N, Shu D G, Han J, et al. 2008. Origin, diversification, and relationships of Cambrian lobopods. Gondwana Res, 14: 277–283CrossRefGoogle Scholar
  54. Love G D, Grosjean E, Stalvies C, et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457: 718–721CrossRefGoogle Scholar
  55. Marshall C R. 2003. Nomethetism and understanding the Cambrian “explosion”. Palaios, 18: 195–196CrossRefGoogle Scholar
  56. Marshall C R. 2006. Explaining the Cambrian “explosion” of animals. Annual Rev Earth Planet Sci, 34: 355–384CrossRefGoogle Scholar
  57. Meert J G. 2003. Proterozoic East Gondwana: Supercontinent assembly and breakup. Spec Publ 206, EOS Trans Amer Geophys Union, 84: 372CrossRefGoogle Scholar
  58. Meert J G. 2011. Gondwanaland, formation. In: Reitner J, Thiel V, eds. Encyclopedia of Geobiology. Berlin: Springer. 434–436CrossRefGoogle Scholar
  59. Müller K J, Walossek D, Zakharov A. 1995. Orsten type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia. Neues Jahrbuch Geol Paläont, 197: 101–118Google Scholar
  60. Nielsen C. 2012. Animal Evolution: Interrelationships of the Living Phyla. 3rd ed. Oxford: Oxford University Press. 1–402Google Scholar
  61. Papineau D. 2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology, 10: 165–181CrossRefGoogle Scholar
  62. Peel J S. 2010. A corset-like fossil from the Cambrian Sirius Passet Lagerstatte of North Greenland and its implications for cycloneuralian evolution. J Paleont, 84: 332–340CrossRefGoogle Scholar
  63. Peterson K J, Davidson E H. 2000. Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci USA, 97: 4430–4433CrossRefGoogle Scholar
  64. Petsch S T. 2004. The global oxygen cycle. In: Schlesinger W H, ed. Biogeochemistry. Treatise Geochem, 8: 515–555Google Scholar
  65. Planavsky N J, Rouxel O J, Bekker A, et al. 2010. The evolution of the marine phosphate reservoir. Nature, 467: 1088–1090CrossRefGoogle Scholar
  66. Poinar G J, Buckley R. 2006. Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordolidae) parasites in the early Cretaceous amber. J Invertebr Pathol, 93: 36–41CrossRefGoogle Scholar
  67. Poinar G J, Kerp H, Hass H. 2008. Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology, 10: 9–14CrossRefGoogle Scholar
  68. Reitner J. 1992. Coralline spongien: Der versuch einer phylogenetisch-taxonomischen analyse. Berliner Geowissenschaftish Abhandlung Reihe E (Paläobiologie), 1: 1–200Google Scholar
  69. Reitner J, Wörheide G. 2002. A Guide to the Classification of Sponges. In: Hooper J N A, Van Soest R W M, eds. Systema Porifer. New York: Kluwer Academic/Plenum. 52–68CrossRefGoogle Scholar
  70. Rogers J J W, Santosh M. 2004. Continents and Supercontinents. Oxford: Oxford University Press. 1–289Google Scholar
  71. Rowland S M, Hicks M. 2004. The early Cambrian experiment in reef-building by metazoans. In: Lipps J H, Waggoner B M, eds. Neoproterozoic-Cambrian Biological Revolutions. Paleont Soc Paper, 10: 107–124Google Scholar
  72. Seilacher A, Pflüger F. 1994. From biomats to benthic agriculture: A biohistoric revolution. In: ai]Krumbein W E, Paterson D M, Stal L J, eds. Biostabilization of Sediments. Oldenburg: Universität Oldenburg Press. 97–105Google Scholar
  73. Shu, D G. 2008. Cambrian explosion: Birth of animal tree. Gondwana Res, 14: 219–240CrossRefGoogle Scholar
  74. Shu D G, Conway M S, Han J, et al. 2001. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, south China). Nature, 414: 419–424CrossRefGoogle Scholar
  75. Shu D G, Conway M S, Zhang Z F, et al. 2010. The earliest history of the deuterostomes, the importance of the Chengjiang Fossil-Lagerstätte. Proc R Soc B, 277: 165–174CrossRefGoogle Scholar
  76. Shu D G, Isozaki Y, Zhang X L, et al. 2013. The birth and evolution of metazoans. Gondwana Res, doi: org/10.1016/ Scholar
  77. Shu D G, Zhang X L, Han J, et al. 2009. Restudy of Cambrian explosion and formation of animal tree. Acta Palaeontol Sin, 48: 414–427Google Scholar
  78. Skovsted C B, Brock G A, Topper T P, et al. 2011. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology, 54: 253–286CrossRefGoogle Scholar
  79. Sperling E A, Vinther J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev, 12: 201–209CrossRefGoogle Scholar
  80. Squire R J, Campbell I H, Allen C M, et al. 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett, 250: 116–133CrossRefGoogle Scholar
  81. Szaniawski H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeont Pol, 47: 405–419Google Scholar
  82. Tang F, Bengtson S, Wang Y, et al. 2011. Eoandromeda and the origin of Ctenophora. Evol Dev, 13: 408–414CrossRefGoogle Scholar
  83. Todd J A, Taylor P D. 1992. The first fossil entoproct. Naturwissenschaften, 79: 311–314CrossRefGoogle Scholar
  84. Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525–531CrossRefGoogle Scholar
  85. Valentine J W. 2001. How were vendobiont bodies patterned? Paleobiology, 27: 425–428CrossRefGoogle Scholar
  86. Valentine J W, Erwin D H, Jablonski D. 1996. Developmental evolution of metazoan body plans: The fossil evidence. Dev Biol, 173: 373–381CrossRefGoogle Scholar
  87. Valentine J W, Moores E M. 1970. Plate-tectonic regulation of faunal diversity and sea level: A model. Nature, 228: 657–659CrossRefGoogle Scholar
  88. Wang J G, Chen D Z, Yan D T, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306: 129–138CrossRefGoogle Scholar
  89. Xiao S H, Yuan X L, Knoll A H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci USA, 97: 13684–13689CrossRefGoogle Scholar
  90. Xiao S H, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproteozoic phosphorite. Nature, 391: 553–558CrossRefGoogle Scholar
  91. Yin L M, Zhu M Y, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661–663CrossRefGoogle Scholar
  92. Yuan X L, Chen Z, Xiao S H, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390–393CrossRefGoogle Scholar
  93. Zhang Z F, Holmer L E, Skovsted C B, et al. 2013. A sclerite-bearing stem group entoproct from the Early Cambrian and its implications. Sci Rep, 3: 1–10Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Continental Dynamics and Department of GeologyNorthwest UniversityXi’anChina
  2. 2.Early Life InstituteNorthwest UniversityXi’anChina

Personalised recommendations