Skip to main content
Log in

Experimental investigation of phase transformations of olivine and enstatite at the lower part of the mantle transition zone: Implications for structure of the 660 km seismic discontinuity

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

High-pressure polymorphs of olivine and enstatite are major constituent minerals in the mantle transition zone (MTZ). The phase transformations of olivine and enstatite at pressure and temperature conditions corresponding to the lower part of the MTZ are import for understanding the nature of the 660 km seismic discontinuity. In this study, we determine phase transformations of olivine (MgSi2O4) and enstatite (MgSiO3) systematiclly at pressures between 21.3 and 24.4 GPa and at a constant temperature of 1600°C. The most profound discrepancy between olivine and enstatite phase transformation is the occurency of perovskite. In the olivine system, the post-spinel transformation occures at 23.8 GPa, corresponding to a depth of 660 km. In contrast, perovskite appears at <23 GPa (640 km) in the enstatite system. The ∼1 GPa gap could explain the uplifting and/or splitting of the 660 km seismic discountinuity under eastern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee C B. Phase transformations and seismic structure in the upper mantle and transition zone. Rev Mineral Geochem, 1998, 37: 165–203

    Google Scholar 

  • Ai Y, Zheng T, Xu W, et al. A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett, 2003, 212: 63–71

    Article  Google Scholar 

  • Ai Y, Zheng T. The upper mantle discontinuity structure beneath eastern China. Geophys Res Lett, 2003, 30: 2089

    Article  Google Scholar 

  • Akaogi M, Ito E, Navrotsky A. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res, 1989, 94: 15671–15685

    Article  Google Scholar 

  • Akaogi M, Kojitani H, Morita T, et al. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys Chem Miner, 2008, 35: 287–297

    Article  Google Scholar 

  • Akaogi M, Navrotsky A, Yagi T, et al. Pyroxene-garnet transformation: Thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani M H, Syono Y, eds. High-Pressure Research in Mineral Physics. Washington DC: American Geophysical Union, 1987. 251–260

    Google Scholar 

  • Akoagi M. 2007. Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: Ohtani E, ed. Advances in High-Pressure Mineralogy. Geol Soc of Am Spec Paper, 421, 1–13

    Article  Google Scholar 

  • Andrews J, Deuss A. Detailed nature of the 660 km region of the mantle from global receiver function data. J Geophy Res, 2008, 113: B06304

    Google Scholar 

  • Bertka C M, Fei Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res, 1997, 102: 5251–5264

    Article  Google Scholar 

  • Chen M. Features and conditions for the intracrystalline transformation from olivine to higher pressure polymorphs in shock-metamorphosed meteorites (in Chinese). Acta Mineral Sin, 2009, 29: 1–6

    Article  Google Scholar 

  • Deuss A, Redfern S A T, Chambers K, et al. The nature of the 660-kilometer discontinuity in Earth’s mantle from global seismic observations of PP precursors. Science, 2006, 311: 198–201

    Article  Google Scholar 

  • Dziewonski A M, Anderson D L. Preliminary reference Earth model (PREM). Phys Earth Planet Inter, 1981, 25: 297–356

    Article  Google Scholar 

  • Fei Y, Bertka C M. 1999. Phase transitions in the Earth’s mantle and mantle mineralogy. In: Fei Y, Bertka C M, Mysen B O, eds. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R Boyd. Geochem Soc Spec Public, 69: 189–207

    Google Scholar 

  • Fei Y, Van Orman J, Li J, et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res, 2004, 109: B02305

    Google Scholar 

  • Ferroir T, Beck P, Van de Moortèle B, et al. Akimotoite in the Tenham meteorite: Crystal chemistry and high pressure transformation mechanisms. Earth Planet Sci Lett, 2008, 275: 26–31

    Article  Google Scholar 

  • Gasparik T. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contr Mineral Petr, 1989, 102: 389–405

    Article  Google Scholar 

  • Gilbert H J, Sheehan A F, Dueker K G, et al. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J Geophys Res, 2003, 108: 2229

    Article  Google Scholar 

  • Hirose K, Fei Y, Ono S, et al. 2001a. In situ measurements of the phase transition boundary in Mg3Al2Si3O12: Implications for the nature of the seismic discontinuities in the Earth’s mantle. Earth Planet Sci Lett, 184: 567–573

    Article  Google Scholar 

  • Hirose K, Komabayashi T, Murakami M, et al. 2001b. In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. Geophys Res Lett, 28: 4351–4354

    Article  Google Scholar 

  • Irifune T, Koizumi T, Ando J. 1996. An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys Earth Planet Inter, 96: 147–157

    Article  Google Scholar 

  • Irifune T, Nishiyama N, Kuroda K, et al. 1998. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science, 279: 1698–1700

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M. 2011. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet Sci Lett, 309: 185–197

    Article  Google Scholar 

  • Ito E, Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res, 94: 10637–10646

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, et al. 2004. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophy Res, 109: B02209

    Google Scholar 

  • Katsura T, Yamada H, Shinmei T, et al. 2003. Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry. Phys Earth Planet Inter, 136: 11–24

    Article  Google Scholar 

  • Kubo T, Ohtani E, Kato T, et al. 2000. Formation of metastable assemblages and mechanisms of the grain-size reduction in the post-spinel transformation of Mg2SiO4. Geophys Res Lett, 27: 807–810

    Article  Google Scholar 

  • Kubo T, Ohtani E, Kato T, et a1. 2002. Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4. Phys Earth Planet Inter, 129: 153–171

    Article  Google Scholar 

  • Liu L G. 1976. The post-spinel phase of forsterite. Nature, 262: 770–772

    Article  Google Scholar 

  • Ono S, Katsura T, Ito E, et al. 2001. In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett, 28: 835–838

    Article  Google Scholar 

  • Pacalo R, Gasparik T. 1990. Reversal of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J Geophy Res, 95: 15853–15858

    Article  Google Scholar 

  • Reynard B, Rubie D. 1996. High-pressure, high-temperature Raman spectroscopic study of ilmenite-type MgSiO3. Am Mineral, 81: 1092–1096

    Google Scholar 

  • Ringwood A E, Major A. 1970. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Inter, 3: 89–108

    Article  Google Scholar 

  • Ringwood A E. 1962. A model for the upper mantle. J Geophys Res, 67: 857–867

    Article  Google Scholar 

  • Saikia A, Frost D, Rubie D. 2008. Splitting of the 520-kilometer seimic discontinuity and chemical heterogeneity in the mantle. Nature, 139: 1515–1518

    Google Scholar 

  • Sawamoto H. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200°C: Phase stability and properies of tetragonal garnet. In: Manghnani M H, Syono Y, eds. High-Pressure Research in Mineral Physics. Tokyo: Terra, 1987. 209–219

    Google Scholar 

  • Shim S H, Duffy T S, Shen G. 2001. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature, 411: 571–574

    Article  Google Scholar 

  • Simmons N A, Gurrola H. 2000. Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature, 405: 559–562

    Article  Google Scholar 

  • Tibi R, Wiens D A, Shiobara H, et al. 2007. Double seismic discontinuities at the base of the mantle transition zone near the Mariana slab. Geophys Res Lett, 34: L16316

    Google Scholar 

  • van der Meijde M, van der Lee S, Giardini D. 2005. Seismic discontinuities in the Mediterranean mantle. Phys Earth Planet Inter, 148: 233–250

    Article  Google Scholar 

  • Wang Y. 2006. Combing the large-volume press with synchrontron radiation: Applications to in-situ studies of earth materias under high pressure and temperature (in Chinese). Earth Sci Front, 13: 1–36

    Google Scholar 

  • Wu Y, Wang Y B, Zhang Y F, et al. 2012. An experimental study of phase transformations in olivine under pressure and temperature conditions corresponding to the mantle transition zone. Chin Sci Bull, 57: 894–901

    Article  Google Scholar 

  • Yamazaki D, Yoshino T, Matsuzaki T, et al. Texture of (Mg,Fe)SiO3 perovskite and ferro-periclase aggregate: Implications for rheology of the lower mantle. Phys Earth Planet Inter, 2004, 174: 138–144

    Article  Google Scholar 

  • Yu Y G, Wentzcovitch R M, Tsuchiya T, et al. 2007. First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett, 34: L10306

    Article  Google Scholar 

  • Yu Y G, Wu Z, Wentzcovitch R M. 2008. α-β-Γ transformations in Mg2SiO4 in Earth’s transition zone. Earth Planet Sci Lett, 273: 115–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zhang, Y., Wang, Y. et al. Experimental investigation of phase transformations of olivine and enstatite at the lower part of the mantle transition zone: Implications for structure of the 660 km seismic discontinuity. Sci. China Earth Sci. 57, 592–599 (2014). https://doi.org/10.1007/s11430-013-4735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4735-x

Keywords

Navigation