Skip to main content
Log in

Chronology and petrogenesis of the Hejiazhuang granitoid pluton and its constraints on the Early Triassic tectonic evolution of the South Qinling Belt

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Hejiazhuang pluton is located in the South Qinling Tectonic Belt (SQTB) in the north side of the Mianxian-Lueyang Suture Zone, and consists dominantly of granodiorites. LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic analyses reveal that these granodiorites of the Hejiazhaung pluton emplaced at ∼248 Ma, and show a large variation in zircon ɛHf(t) values from −4.8 to 8.8. These granodiorite samples are attributed to high-K to mid-K calc-alkaline series, and characterized by high SiO2 (66.6%–70.0%), Al2O3 (15.04%–16.10%) and Na2O (3.74%–4.33%) concentrations, with high Mg# (54.2–61.7). All samples have high Sr (627–751 ppm), Cr (55–373 ppm) and Ni (17.2–182 ppm), but low Y (5.42–8.41 ppm) and Yb (0.59–0.74 ppm) concentrations with high Sr/Y ratios (84.90–120.66). They also display highly fractionated REE patterns with (La/Yb)N ratios of 18.9–34.0 and positive Eu anomalies (δEu=1.10–2.22) in the chondrite-normalized REE patterns. In the primitive mantle normalized spidergrams, these samples exhibit enrichment in LILEs but depletion in Nb, Ta, P and Ti. These geochemical features indicate that the granodioritic magma of the Hejiazhuang pluton was derived from the partial melting of hybrid sources comprising the subducted oceanic slab and sediments, and the melts were polluted by the mantle wedge materials during their ascent. The emplacement ages and petrogenesis of the Hejiazhuang pluton prove that the initial subduction of the Mianlue oceanic crust occurred at ∼248 Ma ago, and the SQTB was still under subduction tectonic setting in the Early Triassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson T. 2002. Correlation of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59–79

    Article  Google Scholar 

  • Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, orginal and relations with the hosts. Lithos, 88: 155–177

    Article  Google Scholar 

  • Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F, ed. Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier. 1–12

    Chapter  Google Scholar 

  • Batchelor R A, Bowden P. 1985. Petrogenesis interpretation of granitoids rock series using multicationic parameters. Chem Geol, 48: 43–55

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 148: 243–258

    Article  Google Scholar 

  • Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crust, sources? A review. Lithos, 78: 1–24

    Article  Google Scholar 

  • Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol, 134: 33–51

    Article  Google Scholar 

  • Chappell B W. White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh. Earth Sci, 83: 1–26

    Article  Google Scholar 

  • Chen Y B, Zhang G W, Lu R K, et al. 2010. Detrital zircon U-Pb geochronology of Dacaotan Group in the conjunction area of North Qinling and Qilian (in Chinese). Acta Geol Sin, 84: 947–962

    Article  Google Scholar 

  • Chung S L, Liu D Y, Ji J, et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021–1024

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • DePaolo D J. 1981. Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett, 53: 189–202

    Article  Google Scholar 

  • Dong Y P, Zhang G W, Neubauer F, et al. 2011a. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J Asian Earth Sci, 41: 213–237

    Article  Google Scholar 

  • Dong Y P, Liu X M, Santosh, M. et al. 2011b. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan massif. Precambrian Res, 189: 69–90

    Article  Google Scholar 

  • Dong Y P, Zhang G W, Hauzenberger C, et al. 2011c. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122: 39–56

    Article  Google Scholar 

  • Dong Y P, Liu X M, Zhang G W, et al. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling Orogen, China. J Asian Earth Sci, 47: 123–142

    Article  Google Scholar 

  • Dong Z C, Wang H L, Guo C L, et al. 2009. Geochemical characteristics of Ordovician Honghuapu intrusions in the west segment of North Qinling Mountains and their geological significance (in Chinese). Acta Petrol Mineral, 28: 109–117

    Google Scholar 

  • Foley S, Tiepolo M, Riccardo V. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840

    Article  Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133–147

    Article  Google Scholar 

  • Guo R R, Liu S W, Santosh, M, et al. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Res, 24: 664–686

    Article  Google Scholar 

  • Hermann J, Spandler C. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

    Article  Google Scholar 

  • Hoskin P, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 53: 27–62

    Article  Google Scholar 

  • Jiang C F, Zhu Z Z, Kong F Z. 1979. On the Liufengguan flysch (in Chinese). Acta Geol Sin, 3: 203–220

    Google Scholar 

  • Jiang Y H, Jin G D, Liao S Y, et al. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117: 183–197

    Article  Google Scholar 

  • Jin W J, Zhang Q, He D F, et al. 2005. SHRIMP dating of adakites in western Qinling and their implications (in Chinese). Acta Petrol Sin, 21: 959–966

    Google Scholar 

  • Kepezhinskas P, McDemott F, Defant M J, et al. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577–600

    Article  Google Scholar 

  • Lai S C, Qin J F, Chen L. 2008. Geochemistry of ophiolites from the Mian-Lue Suture Zone: Implications for the tectonic evolution of the Qinling Orogen, Central China. Int Geol Rev, 50: 650–664

    Article  Google Scholar 

  • Lai S C, Qin J F. 2010a. Geochemical Features of Ophiolites and Associated Volcanic (in Chinese). Beijing: Science Press. 257

    Google Scholar 

  • Lai S C, Qin J F. 2010b. Zircon U-Pb dating and Hf isotopic composition of the Diabase Dike Swarm from Sanchazi Area, Mianlue Suture-Chronology evidence for the Paleo-Tethys oceanic crust subduction (in Chinese). J Earth Sci Environ, 32: 27–33

    Google Scholar 

  • Li S G, Sun W D, Zhang G W, et al. 1996. Chronology and geochemistry of metavolcanic rocks from Heigouxia valley in the Mian-Lue tectonic zone, South Qinling—Evidence for a Paleozoic oceanic basin and its close time. Sci China Ser D-Earth Sci, 39: 300–310

    Google Scholar 

  • Li S G, Hou Z H, Yang Y C, et al. 2004. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlüe tectonic zone, South Qinling. Sci China Ser D-Earth Sci, 47: 317–328

    Article  Google Scholar 

  • Li S Z, Kusky T M, Wang L, et al. 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Res, 12: 121–143

    Article  Google Scholar 

  • Ling W L, Duan R C, Liu X M. 2010. U-Pb dating of detrital zircons from theWudangshan Group in the South Qinling and its geological significance. Chin Sci Bull, 55: 2440–2448

    Article  Google Scholar 

  • Liu S W, Pan Y M, Xie Q L, et al. 2004. Archean geodynamics in the Central Zone, North China craton: Constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaishan complexes. Precambrian Res, 130: 229–249

    Article  Google Scholar 

  • Liu S W, Pan Y M, Xie Q L, et al. 2005. Geochemistry of the Neoproterozoic Nanying granitic gneisses in the Fuping complex: Implications for the tectonic evolution of the Central zone, North China Craton. J Asian Earth Sci, 24: 643–658

    Article  Google Scholar 

  • Liu S W, Li Q G, Tian W, et al. 2011a. Petrogenesis of Indosinian granitoids in middle-segment of South Qinling tectonic belt: Constraints from Sr-Nd isotopic systematics. Acta Geol Sin, 85: 610–628

    Article  Google Scholar 

  • Liu S W, Yang P T, Li Q G, et al. 2011b. Indosinian Granitoids and Orogenic Processes in the Middle Segment of the Qinling Orogen, China (in Chinese). J Jilin Univ (Earth Sci Ed), 41: 1928–1943

    Google Scholar 

  • Liu X M, Gao S, Diwu C R. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Am J Sci, 308: 421–468

    Article  Google Scholar 

  • Ludwig K R. 2003. Isoplot 3.0—A geochronological toolkit for Microsoft Excel. Berkeley Geochron Center Spec Pub, (4): 1–70

    Google Scholar 

  • Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243: 581–593

    Article  Google Scholar 

  • Maniar P D. Piccoli P M. 1989. Tectonic discrimination of granitoids. Geol Soc Amer Bull, 101: 635–643

    Article  Google Scholar 

  • Martin H, Smithies R H. Moyen J F, et al. 2005. An overview of adakite, tonalite-trondhjemite -granodiorite (TTG), and sanukitoid: Relationships and some implications for crust evolution. Lithos, 79: 1–24

    Article  Google Scholar 

  • Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 25: 956–983

    Article  Google Scholar 

  • Petford N, Atherton M, 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol, 37: 1491–1521

    Article  Google Scholar 

  • Qin J F, Lai S C. 2011. Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt (in Chinese). Beijing: Science Press. 267

    Google Scholar 

  • Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res, 51: 1–25

    Article  Google Scholar 

  • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol 36: 891–931

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335–356

    Article  Google Scholar 

  • Rollinson H R. 1993. Using Geological Data: Evalution, Presentation, Interpretation. London: Person Education Limited. 284

    Google Scholar 

  • Schiano P, Monzier M, Eissen J P, et al. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol, 160: 297–312

    Article  Google Scholar 

  • Soderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett, 219: 311–324

    Article  Google Scholar 

  • Moyen J F. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112: 556–574

    Article  Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc London Spec Publ, 42: 313–345

    Google Scholar 

  • Vernon R H. 1984. Micro-granitoid enclaves: Globules of hybrid magma quenched in a plutonic environment. Nature, 304: 438–439

    Article  Google Scholar 

  • Wan Y S, Dong C Y, Liu D Y, et al. 2012. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: A review. Precambrian Res, 222–223: 265–289

    Article  Google Scholar 

  • Wang H L, He S P, Chen J L, et al. 2006. LA-ICPMS Dating of zircon U-Pb and tectonic significance of Honghuapu subduction-related intrusions in the west segment of Northern Qinling Mountains (in Chinese). Geoscience, 20: 536–544

    Google Scholar 

  • Wang W, Liu S W, Bai X, et al. 2011a. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Neoarchean Yixian-Fuxin greenstone belt, northern Margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Res, 20: 64–81

    Article  Google Scholar 

  • Wang W, Liu S W, Wu F H, et al. 2011b. Emplaced and metallogenetic times of Tongchang diorities, southern Shaanxi Province and its geological implications (in Chinese). Acta Scientiarum Naturalium Universitatis Pekinensis, 47: 91–102

    Google Scholar 

  • Wang W, Liu S W, Feng Y G, et al. 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: Constraints from geochemistry and zircon U-Pb-Hf isotopic systematics. Gondwana Res, 22: 699–716

    Article  Google Scholar 

  • Wang X X, Wang T, Castro A, et al. 2011c. Triassic granitoids of the Qinling orogen, central China, Genetic relationship of enclaves and rapakivi-textured rocks. Lithos, 126: 369–387

    Article  Google Scholar 

  • Wu F H, Liu S W, Li Q G, et al. 2009. Zircon U-Pb geochronology and geological significance of Guangtoushan granitoids from Western Qinling, Central China (in Chinese). Acta Scientiantiarum Naturalium Universitatis Pekinensis, 45: 811–818

    Google Scholar 

  • Wyllie P J, Wolf M B. 1993. Amphibolite dehydration-melting: sorting out the solidus. In: Prichard H M, Alabaster T, Harris, N B W, eds. Magmatic Processes and Plate Tectonics. Geol Soc London Spec Publ, 76: 405–416

    Google Scholar 

  • Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339–359

    Article  Google Scholar 

  • Xiong X L, Liu X C, Zhu Z M, et al. 2011. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry. Sci China: Earth Sci, 54: 858–870

    Article  Google Scholar 

  • Xu J F, Castillo P R, Li X H et al. 2002a. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd Mantle component in the Indian Ocean. Earth Planet Sci Lett, 198: 323–337

    Article  Google Scholar 

  • Xu J F, Shinjio R, Defant M J, et al. 2002b. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 12: 1111–1114

    Article  Google Scholar 

  • Xu J F, Zhang B R, Han Y W. 2008. Geochemistry of the Mian-Lue ophiolites in the Qinling Mountains, central China: Constraints on the evolution of the Qinling orogenic belt and collision of the North and South China Cratons. J Asian Earth Sci, 32: 336–347

    Article  Google Scholar 

  • Yan Q R, Wang Z Q, Chen J L, et al. 2007. Tectonic setting and SHRIMP age of volcanicr Rocks in the Xieyuguan and Caotangou Groups: Implications for the North Qinling Orogenic Belt (in Chinese). Acta Geol Sin, 81: 489–502

    Google Scholar 

  • Yan Z, et al. 1985. Granites of Shaanxi Province (in Chinese). Xi’an: Xi’an Jiaotong University Press. 321

  • Yan Z, Wang Z Q, Chen J L, et al. 2009. Geochemistry and SHRIMP zircon U-Pb dating of amphibolites from the Danfeng Group in the Wuguan Area, North Qinling Terrane and their tectonic significance (in Chinese). Acta Geol Sin, 83: 1633–1646

    Google Scholar 

  • Yang K, Liu S W, Li Q G., et al. 2009. LA-ICPMS zircon U-Pb geochronology and geological significance of Zhashui granitoids and Dongjiangkou granitoids from Qinling, Central China (in Chinese). Acta Scientiantiarum Naturalium Universitatis Pekinensis, 45: 841–847

    Google Scholar 

  • Yang P T, Liu S W, Li Q G, et al. 2011. Ages of the Laocheng Granitoids and crustal growth in the South Qinling Tectonic Domain, Central China: Zircon U-Pb and Lu-Hf isotopic constraints. Acta Geol Sin, 85: 801–816

    Article  Google Scholar 

  • Yang P T, Liu S W, Li Q G, et al. 2012a. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: Constraints on petrogenesis and geodynamic processes. J Asian Earth Sci, 61: 166–186

    Article  Google Scholar 

  • Yang P T, Liu S W, Li Q G, et al. 2012b. Emplacing ages of the Tiewadian pluton in the South Qinling tectonic belt and its geological implications (in Chinese). Acta Geol Sin, 86: 1525–1540

    Article  Google Scholar 

  • Yuan H L, Gao S, Dai M N, et al. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 247: 100–117

    Article  Google Scholar 

  • Zhang B R, Gao S, Zhang H F, et al. 2002. Geochemistry of the Qinling Orogenic Belt (in Chinese). Beijing: Science Press. 188

    Google Scholar 

  • Zhang C L, Wang T, Wang X X. 2008. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt (in Chinese). Geol J China Univ, 14: 304–316

    Google Scholar 

  • Zhang F, Liu S W, Li Q G, et al. 2009. LA-ICP-MS zircon U-Pb geochronology and geological significance of Xiba granite from Qinling, Central China (in Chinese). Acta Scientiarum Naturalium Universitatis Pekinensis, 45: 833–840

    Google Scholar 

  • Zhang F, Liu S W, Li Q G, et al. 2011. Re-Os and U-Pb geochronology of the Erlihe Pb-Zn deposit, Qinling Orogenic Belt, Central China, and constraints on its deposit genesis. Acta Geol Sin, 85: 673–682

    Article  Google Scholar 

  • Zhang, G W, Zhang B R, Yuan X C. 2001. Qinling Orogenic Belt and Continental Dynamics (in Chinese). Beijing: Science Press, 855

  • Zhang Z Q, Zhang G W, Liu D Y. 2006. Isotopic Geochronology and Geochemistry of Ophiolite, Granitoids and Detrital Sedimentary Rocks from Qinling Orogenic Belts (in Chinese). Beijing: Geological Publishing House. 348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuWen Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Liu, S., Li, Q. et al. Chronology and petrogenesis of the Hejiazhuang granitoid pluton and its constraints on the Early Triassic tectonic evolution of the South Qinling Belt. Sci. China Earth Sci. 57, 232–246 (2014). https://doi.org/10.1007/s11430-013-4666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4666-6

Keywords

Navigation