Skip to main content
Log in

Thermal convection thinning of the North China Craton: Numerical simulation

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We used two-dimensional numerical simulations to investigate small-scale convection in the upper mantle-lithosphere system with depth- and temperature-dependent viscosity. Our aim was to examine the mechanism of craton thinning by thermal convection. The model domain is 700 km deep and 700 km wide with a resolution of 71×71 nodes and 160000 markers. The velocity boundary conditions are free-slip along all the boundaries. A thermal insulation condition was applied at the two side walls, with constant temperatures for the top and bottom boundaries. We assumed an initial temperature of 273 K at the upper boundary and 1673 K at the lower boundary, and 1573 K at the bottom of the lithosphere (200 km depth) for the thick, cold, and stable North China Craton (NCC). We calculated the thermal evolution in the upper mantle when the temperature at its bottom is raised because of lower mantle convection or plumes. The temperature at the bottom of the upper mantle was set at 1773, 1873, 1973, and 2073 K for different models to study the temperature effect on the lithospheric thinning processes. Our end-member calculations show that with the bottom boundary raising the lithosphere can be thinned from a depth of 200 km to a depth of between 100 and 126.25 km. The thinning rates are at mm/y order of magnitude, and the thinning timescale is about 10 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 2005, 43: RG1001, doi: 10.1029/2004RG000156

    Article  Google Scholar 

  2. Menzies M A, Fan W, Zhang M. Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al., eds. Magmatic Processes and Plate Tectonics. Geol Soc London Spec Publ, 1993, 76: 71–81

    Article  Google Scholar 

  3. Griffin W L, Zhang A, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Amer Geophys Union Geodyn Ser, 1998, 27: 107–126

    Article  Google Scholar 

  4. Foley S F. Rejuvenation and erosion of the cratonic lithosphere. Nature Geosci, 2008, 1: 503–510

    Article  Google Scholar 

  5. Wu F Y, Xu, Y G, Gao S, et al. Controversy over studies of the lithospheric thinning and craton destruction of North China (in Chinese with English abstract). Acta Petrol Sin, 2008, 24: 1145–1174

    Google Scholar 

  6. Zheng Y F, Wu F Y. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 2009, 54: 3347–3353

    Article  Google Scholar 

  7. Gao S, Rudnick R, Yuan H, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892–897

    Article  Google Scholar 

  8. Gao S, Rudnick R, Xu W, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41–53

    Article  Google Scholar 

  9. Zheng J, O’Reilly S, Griffin W, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean craton, eastern China. Int Geol Rev, 1998, 40: 471–499

    Article  Google Scholar 

  10. Zheng J, Griffin W, O’Reilly S, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203–5225

    Article  Google Scholar 

  11. Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth, 2001, 26: 747–757

    Google Scholar 

  12. Xu Y, Huang X, Ma J, et al. Crust-mantle interaction during the tectonic-thermal reactivation of the North China Craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 2004, 147: 750–767

    Article  Google Scholar 

  13. Zhang H. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean Craton. Earth Planet Sci Lett, 2005, 237: 768–780

    Article  Google Scholar 

  14. Menzies M, Xu Y, Zhang H, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1–21

    Article  Google Scholar 

  15. Schmeling H, Margant G. Mantle flow and evolution of the lithosphere. Phys Earth Planet Int, 1993, 79: 241–267

    Article  Google Scholar 

  16. Schmeling H, Margant G. The influence of second-scale convection on the thickness of continental lithosphere and crust. Tectonophysics, 1991, 189: 281–306

    Article  Google Scholar 

  17. Richter F H, Person B. On the interaction of two scales of convection in the mantle. J Geophys Res, 1975, 80: 2529–2541

    Article  Google Scholar 

  18. Buck W R. When does small-scale convection begin beneath oceanic lithosphere? Nature, 1985, 313: 775–777

    Article  Google Scholar 

  19. Buck W R, Parmentier E M. Convection beneath young oceanic lithosphere: Implications for thermal structure and gravity. J Geophys Res, 1986, 91: 1961–1974

    Article  Google Scholar 

  20. Davaille A, Jaupart C. Transient high-Rayleigh-number thermal convection with large viscosity variations. J Fluid Mech, 1993, 253: 141–166

    Article  Google Scholar 

  21. Davaille A, Jaupart C. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J Geophys Res, 1994, 99: 19853–19866

    Article  Google Scholar 

  22. Yuen D A, Fleitout L. Thinning of the lithosphere by small-scale convective destabilization. Nature, 1985, 313: 125–128

    Article  Google Scholar 

  23. Ogawa M, Schubert G, Zebib A. Numerical simulations of threedimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J Fluid Mech, 1991, 233: 299–328

    Article  Google Scholar 

  24. Dumoulin C, Doin M P, Fleitout L. Numerical simulations of the cooling of an oceanic lithosphere above a convective mantle. Phys Earth Planet Int, 2001, 125: 45–64

    Article  Google Scholar 

  25. Marquart G. On the geometry of mantle flow beneath drifting lithospheric plates. Geophys J Int, 2001, 144: 356–372

    Article  Google Scholar 

  26. Korenaga J, Jordan T H. Physics of multi-scale convection in the Earth’s mantle 1. Onset of sublithospheric convection. J Geophys Res, 2003, 108: 2333, doi: 10.1029/2002JB001760

    Article  Google Scholar 

  27. Korenaga J, Jordan T H. On ‘steady state’ heat flow and the rheology of the oceanic mantle. Geophys Res Lett, 2002, 29: 2056, doi: 10.1029/2002GL016085

    Article  Google Scholar 

  28. Huang J S, Zhong S, van Hunen J. Controls on sublithospheric small-scale convection. J Geophys Res, 2003, 108: 2405, doi: 10.1029/ 2003JB002456

    Article  Google Scholar 

  29. Van Hunen J, Huang J S, Zhong S. The effects of shearing on the onset and vigor of small-scale convection in Newtonian rheology. Geophys Res Lett, 2003, 30: 1991

    Article  Google Scholar 

  30. Robinson E M, Parsons B, Daly S F. The effects of a shallow viscosity zone on the apparent compensation of mid-plate swell. Earth Planet Sci Lett, 1987, 82: 335–348

    Article  Google Scholar 

  31. Ye Z R, Wang J. A numerical research on the small scale convection with variable viscosity in the upper mantle. Chin J Geophys, 2003, 46: 478–488

    Google Scholar 

  32. Fu R S. A new mantle convection model constrained by seismic tomography data. Chin J Geophys, 2003, 46: 772–778

    Google Scholar 

  33. Karato S I, Wu P. Rheology of the upper mantle: A synthesis. Science, 1993, 260: 771–778

    Article  Google Scholar 

  34. Katzman R, Zhao L, Jordan T H. High-resolution, two-dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency-dependent travel times. J Geophys Res, 1998, 103: 17933–17971

    Article  Google Scholar 

  35. Chen L, Zha L, Jordan T H. Full three-dimensional seismic structure of the mantle beneath southwestern Pacific Ocean. EOS Trans AGU, Fall Meet Suppl, Abstract S 52F-0699, 2001, 82: 47

    Google Scholar 

  36. Montagner J P. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet Sci Lett, 2002, 202: 263–274

    Article  Google Scholar 

  37. Ritzwoller M H, Shapiro N, Landuyt W. Two-stage cooling of the Pacific lithosphere. EOS Trans AGU, Spring Meet Suppl, Abstract S 41A-02, 2002, 83: 19

    Google Scholar 

  38. Christensen U. Convection with pressure-and temperature-dependent non-Newtonian rheology. Geophys J Int, 1984, 77: 343–384

    Article  Google Scholar 

  39. Christensen U. Heat transfer by variable viscosity convection and implications for the Earth’s thermal evolution. Phys Earth Planet Int, 1984, 35: 264–282

    Article  Google Scholar 

  40. Christensen U, Hager H. 3-D convection with variable viscosity. Geophys J Int, 1991, 104: 213–220

    Article  Google Scholar 

  41. Tackley P J. Effect of strongly temperature-dependant viscosity on time-dependent 3-dimensional model of mantle convection. J Geophys Res, 1993, 20: 2187–2190

    Google Scholar 

  42. Zhong S, Zuber M T. Role of temperature-dependant viscosity and surface plates in spherical shell models of mantle convection. J Geophys Res, 2000, 105: 11063–11082

    Article  Google Scholar 

  43. Boussinesq J. Theorie Analytique de la Chaleur Mise en Harmonie Avec la Thermodynamique et avec la Theorie Mecanique de la Lumiere. Gauthier-Villars Paris, 1903, 2: 157–176

    Google Scholar 

  44. Rayleigh L. On convective currents in a horizontal layer of fluid, when the higher temperature is on the underside. Philos Mag Ser, 1916, 2: 529–546

    Article  Google Scholar 

  45. Ranalli, G. Rheology of the Earth, London: Chapman and Hall, 1995. 413

    Google Scholar 

  46. Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys Earth Planet Inter, 2003, 140: 295–320

    Article  Google Scholar 

  47. Gerya T V, Maresch W V, Willner A P, et al. Inherent gravitational instability of thickened continental crust with regionally developed low-timedium-pressure granulite facies metamorphism. Earth Planet Sci Lett, 2001, 190: 221–235

    Article  Google Scholar 

  48. Gerya T V, Perchuk L L, Maresch W V, et al. Thermal regime and gravitational instability of multi-layered continental crust: Implications for the buoyant exhumation of high-grade metamorphic rocks. Eur J Miner, 2002, 14: 687–699

    Article  Google Scholar 

  49. Li Z H, Gerya T V. Polyphase formation and exhumation of high-to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J Geophys Res, 2009, 114: B09406, doi: 10.1029/ 2008JB005935.

    Article  Google Scholar 

  50. Li Z H, Gerya T V, Burg J P. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modeling. J Metamorph Geol, 2010, 28: 227–247

    Article  Google Scholar 

  51. Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high-to ultrahigh-pressure rocks in continental collision zones. Earth Planet Sci Lett, 2011, 301: 65–77

    Article  Google Scholar 

  52. Blankenbach B. A benchmark comparison for mantle convection codes. Geophys J Int, 1989, 98: 23–38

    Article  Google Scholar 

  53. McKenzie D, Roberts J M, Weiss N O. Convection in the earth’s mantle: Towards a numerical simulation. J Fluid Mech, 1974, 6: 465–538

    Article  Google Scholar 

  54. Xu Y G, Li H Y, Pang C J, et al. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 2009, 54: 3379–3396

    Article  Google Scholar 

  55. Fan W M, Menzies M. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica Metallogenia, 1992, 16: 171–180

    Google Scholar 

  56. Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111: 2005JBoo3974

    Google Scholar 

  57. Chen L, Tao W, Zhao L. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth Planet Sci Lett, 2008, 267: 56–68

    Article  Google Scholar 

  58. McKenzie D, Bowin C. The relationship between bathymetry and gravity in the Atlantic Ocean. J Geophys Res, 1976, 81: 1903–1915

    Article  Google Scholar 

  59. McKenzie D, Weiss N. Speculations on the thermal and tectonic history of the earth. Geophys J R Astr S, 1975, 42: 131–174

    Article  Google Scholar 

  60. Lu F X, Zheng J P. The main evolution on pattern of Phanerozoic mantle in the eastern China: The “mushroom cloud” model (in Chinese with English abstract). Earth Sci Front (China Univ Geosci Beijing), 2000, 7: 97–108

    Google Scholar 

  61. Yuan X C. Velocity structure of the Qinling lithosphere and mushroom cloud model. Sci China Ser D-Earth Sci, 1996, 39: 235–243

    Google Scholar 

  62. Zhu G, Wang Y S, Niu M L. Synorogenic movement of the Tan-Lu fault zone (in Chinese with English abstract). Earth Sci Front (China Univ Geosci Beijing), 2004, 11: 169–182

    Google Scholar 

  63. Li S G. Exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie mountains and continental collision process between the North and South China blocks (in Chinese with English abstract). Earth Sci Front (China Univ Geosci Beijing), 2004, 11: 63–70

    Google Scholar 

  64. Zhu R X, Zheng T Y. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 2009, 54: 3354–3366, doi: 10.1007/s11434-009-0451-5

    Article  Google Scholar 

  65. Liu Y C, Liu L X, Gu X F, et al. Occurrence of Neoproterozoic low-grade metagranite in the western Beihuaiyang zone, the Dabie orogen. Chin Sci Bull, 2010, 55: 3490–3498

    Article  Google Scholar 

  66. McKenzie D, Jackson J, Priestley K. Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett, 2005, 233: 337–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanChao Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, Y., Guo, Z. & Shi, Y. Thermal convection thinning of the North China Craton: Numerical simulation. Sci. China Earth Sci. 56, 773–782 (2013). https://doi.org/10.1007/s11430-013-4588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4588-3

Keywords

Navigation