Skip to main content
Log in

Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed. The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A. There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes. Flakes of nontronite crystals are found either forming a honeycomb texture or distributed on the surface of the hollow pipes. Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation. Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively. In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%–3.43 wt%). In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively. The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa trough Backarc Basin, Japan. Tectonophysics, 1988, 145: 319–324

    Article  Google Scholar 

  2. Iizasa K, Kawasaki K, Maeda K, et al. Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriolis troughs, Vanuatu backarc, southwestern Pacific. Mar Geol, 1998, 145: 1–21

    Article  Google Scholar 

  3. Smith P, Cronan D. The geochemistry of metalliferous sediments and waters associated with shallow submarine hydrothermal activity (Santorini, Aegean sea). Chem Geol, 1983, 39: 241–262

    Article  Google Scholar 

  4. Varnavas S, Cronan D. Hydrothermal metallogenic processes off the islands of Nisiros and Kos in the Hellenic volcanic arc. Mar Geol, 1991, 99: 109–133

    Article  Google Scholar 

  5. Malahoff A, Mcmurtry G M, Wiltshire J C, et al. Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature, 1982, 298: 234–239

    Article  Google Scholar 

  6. Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar Geol, 1988, 81: 227–239

    Article  Google Scholar 

  7. Puteanus D, Glasby G P, Stoffers P, et al. Hydrothermal iron-rich deposits from the Teahitia-Mehitia and Macdonald hot spot areas, southwest Pacific. Mar Geol, 1991, 98: 389–409

    Article  Google Scholar 

  8. Binns R A, Scott S D, Finlayson E J, et al. Hydrothermal oxide and gold-rich sulfate deposits of Franklin seamount, western Woodlark Basin, Papua New Guinea. Econ Geol, 1993, 88: 2122–2153

    Article  Google Scholar 

  9. Hekinian R, Hoffert M, Larqué P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from south Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Econ Geol, 1993, 88: 2099–2121

    Article  Google Scholar 

  10. Stoffers P, Glasby G P, Stuben D, et al. Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-Mehetia, and Macdonald hot-spot areas of the SW Pacific. Mar Geores Geotechnol, 1993, 11: 45–86

    Article  Google Scholar 

  11. Fortin D, Ferris F G, Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific ocean. Am Miner, 1998, 83: 1399–1408

    Google Scholar 

  12. Hannington M D, Thompson G, Rona P A, et al. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature, 1988, 333: 64–66

    Article  Google Scholar 

  13. Herzig P M, Hannington M D, Scott S D, et al. Gold-rich seafloor gossans in the Troodos ophiolite and on the Mid-Atlantic Ridge. Econ Geol, 1991, 86: 1747–1755

    Article  Google Scholar 

  14. Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge. Geochim Cosmochim Acta, 1995, 59: 3511–3524

    Article  Google Scholar 

  15. Haymon R M, Kastner M. Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description on mineralogy and genesis. Earth Planet Sci Lett, 1981, 53: 363–381

    Article  Google Scholar 

  16. Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Sci China Ser D-Earth Sci, 2008, 51: 206–215

    Article  Google Scholar 

  17. Boyd T, Scott S D. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin seamount, western Woodlark Basin, Papua New Guinea. Can Mineral, 1999, 37: 973–990

    Google Scholar 

  18. Benjamin S B, Haymon R M. Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochem Geophys Geosyst, 2006, 7: Q05002. doi: 10.1029/2005GC001011

    Article  Google Scholar 

  19. Binns R A, Scott S D. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the Eastern Manus Back-arc Basin, Papua New Guinea. Econ Geol, 1993, 88: 2226–2236

    Article  Google Scholar 

  20. Hrischeva E, Scott S D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim Cosmochim Acta, 2007, 71: 3476–3497

    Article  Google Scholar 

  21. Martinez F, Taylor B. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Mar Geophys Res, 1996, 18: 203–224

    Article  Google Scholar 

  22. Binns R A, Barriga F J A S, Miller D J. Leg 193 synthesis: Anatomy of an active felsic-hosted hydrothermal system, Eastern Manus Basin, Papua New Guinea. Proc ODP Sci Results, 2007, 193: 1–71

    Google Scholar 

  23. Waters J C, Binns R A, Naka J. Morphology of submarine felsic volcanic rocks on Pual ridge, Eastern Manus Basin, Papua New Guinea. EOS Trans Am Geophys Union, 1996, 77: W120

    Google Scholar 

  24. Gamo T, Okamura K, Kodama Y, et al. Chemical characteristics of hydrothermal fluids from the Manus Back-arc Basin, Papua New Guinea, I. Major chemical components. EOS Trans Am Geophys Union, 1996, 77: W116

    Google Scholar 

  25. Charlou J L, Donval J P, Fouquet Y, et al. Variability in the chemistry of hydrothermal fluids from the Manus Back-arc Basin, Papua New Guinea. EOS Trans Am Geophys Union, 1996, 77: W116

    Google Scholar 

  26. Moss R, Scott S D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the Eastern Manus Basin, Papua New Guinea. Can Mineral, 2001, 39: 957–978

    Article  Google Scholar 

  27. Parr J M, Binns R A, Gemmell J B. Sulfide chimneys from the Satanic Mills site in the PACMANUS hydrothermal field, Eastern Manus Basin, Papua New Guinea. EOS Trans Am Geophys Union, 1996, 77: W120

    Google Scholar 

  28. Bischoff J L. A ferroan nontronite from the Red Sea geothermal system. Clay Clay Min, 1972, 20: 217–223

    Article  Google Scholar 

  29. Thompson G, Mottl M J, Rona P A. Morphology, mineralogy and chemistry of hydrothermal deposits from the TAG area, 26°N Mid-Atlantic Ridge. Chem Geol, 1985, 49: 243–257

    Article  Google Scholar 

  30. Keeling J L, Raven M D, Gates W P. Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clay Clay Min, 2000, 48: 537–548

    Article  Google Scholar 

  31. Cole T G, Shaw H F. The nature and origin of authigenic smectites in some recent marine sediments. Clay Min, 1983, 18: 239–252

    Article  Google Scholar 

  32. Murnane R, Clague D A. Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge. Earth Planet Sci Lett, 1983, 65: 343–352

    Article  Google Scholar 

  33. Singer A, Stoffers P. Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea. Clay Min, 1987, 22: 251–267

    Article  Google Scholar 

  34. Kohler B, Singer A, Stoffers P. Biogenic nontronite from marine white smoker chimneys. Clay Clay Min, 1994, 42: 689–701

    Article  Google Scholar 

  35. Bender-Koch C, Morup S, Madsen M B, et al. Iron-containing weathering products of basalt in a cold, dry climate. Chem Geol, 1995, 122: 109–119

    Article  Google Scholar 

  36. Reyes A G, Read S. Nontronite formation in rhyolitic ignimbrite. Geochim Cosmochim Acta, 2002, 66: A635

    Article  Google Scholar 

  37. Harder H. Nontronite synthesis at low temperatures. Chem Geol, 1976, 18: 169–180

    Article  Google Scholar 

  38. Harder H. Clay mineral formation under lateritic conditions. Clay Min, 1977, 12: 281–287

    Article  Google Scholar 

  39. Harder H. Synthesis of iron layer silicate minerals under natural conditions. Clay Clay Min, 1978, 26: 65–72

    Article  Google Scholar 

  40. de Carlo E H, McMurtry G M, Yeh H W. Geochemistry of hydrothermal deposits from Loihi submarine volcano, Hawaii. Earth Planet Sci Lett, 1983, 66: 438–449

    Article  Google Scholar 

  41. Dekov V M, Kamenov G D, Stummeyer J, et al. Hydrothermal nontronite formation at Eolo seamount (Aeolian volcanic arc, Tyrrhenian Sea). Chem Geol, 2007, 245: 103–119

    Article  Google Scholar 

  42. Stackelberg U, Marchig V, Miiller P, et al. Hydrothermal mineralization in the Lau and North Fiji Basins. Geology, 1990, 92: 547–614

    Google Scholar 

  43. Tunnicliffe V, Fontaine A R. Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan de Fuca Ridge. J Geophys Res, 1987, 92: 303–314

    Article  Google Scholar 

  44. Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can Mineral, 1998, 26: 859–869

    Google Scholar 

  45. Konhauser K O, Ferris F G. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology, 1996, 24: 323–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Chen, S., Wang, X. et al. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin. Sci. China Earth Sci. 55, 2039–2048 (2012). https://doi.org/10.1007/s11430-012-4536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4536-7

Keywords

Navigation