Skip to main content
Log in

Modification of the lithospheric mantle by melt derived from recycled continental crust evidenced by wehrlite xenoliths in Early Cretaceous high-Mg diorites from western Shandong, China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This paper reports petrographic, mineral chemical, olivine oxygen isotopic, and whole-rock geochemical data for wehrlite xenoliths from the Early Cretaceous Tietonggou high-Mg diorites in western Shandong Province, in the eastern part of the North China Craton (NCC), and describes the origin of these wehrlites and the processes that affected the deep lithospheric mantle in this area. Wehrlite xenoliths are rounded and vary in size between 3 cm × 4 cm × 5 cm and 3 cm × 2 cm × 1 cm. Olivine within these xenoliths occurs as an isolated residual phase within clinopyroxene, has Fo contents between 89 and 91, and contains between 1414 and 3629 ppm Ni, similar to the values of olivine from peridotite xenoliths in the Cenozoic basalts of eastern China, but lower than the values of olivine from harzburgite xenoliths in the Early Cretaceous high-Mg diorites in western Shandong. In situ oxygen isotope analysis yielded δ 18O values of olivine from (6.03±0.33)‰ to (6.82±0.35)‰, averaging (6.5±0.4)‰; this is higher than typical mantle-derived olivine ((5.2±0.3)‰). Compared with clinopyroxenes from peridotite xenoliths in the Late Cretaceous and Cenozoic basalts, clinopyroxenes in the wehrlites contain relatively low concentrations of Na2O, TiO2, and Al2O3, high concentrations of CaO, and higher Mg# (91.2–94.1) and Ti/Eu ratios (2082–2845), being similar in composition to clinopyroxenes within harzburgite xenoliths in the Early Cretaceous high-Mg diorites. Clinopyroxenes from wehrlite xenoliths are characterized by low total REE abundance, enrichment in light REEs, and depletion in high field strength elements such as Nb, Ta, Zr, and Hf. Moreover, the 87Sr/86Sr, 143Nd/144Nd, and 187Os/188Os (125 Ma) ratios of these wehrlites vary from 0.70596 to 0.70737, 0.512181 to 0.512416, and 0.12661 to 0.57650, respectively. These data suggest that these wehrlite xenoliths were formed by modification of the lithospheric mantle by melts derived from recycled continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niu Y L. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Chin Sci Bull, 2009, 54: 4148–4160

    Article  Google Scholar 

  2. Pilet S, Hernandez J, Sylvester P, et al. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett, 2005, 236: 148–166

    Article  Google Scholar 

  3. Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892–897

    Article  Google Scholar 

  4. Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41–53

    Article  Google Scholar 

  5. Zhao G C, Cawood P, Lu L Z. Petrology and P-T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai Complex, China. Precambrian Res, 1999, 93: 181–199

    Article  Google Scholar 

  6. Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochin Acta, 2008, 72: 2349–2376

    Article  Google Scholar 

  7. Cong B L, Wang Q C. The Dabie-Sulu UHP rocks belt: Review and prospect. Chin Sci Bull, 1999, 44: 1074–1086

    Article  Google Scholar 

  8. Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 2003, 62: 105–161

    Article  Google Scholar 

  9. Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721–724

    Article  Google Scholar 

  10. Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123–137

    Article  Google Scholar 

  11. Wang Q C, Lin W. Geodynamics of the Dabieshan collisional orogenic belt (in Chinese with English abstract). Earth Sci Front, 2002, 9: 257–265

    Google Scholar 

  12. Liu F T, Liu J H, He J K, et al. The subduction slab of Yangtze continental block beneath the Tethyan orogen in west Yunnan. Chin Sci Bull, 2000, 45: 79–84

    Article  Google Scholar 

  13. Xu P F, Zhao D P. Upper-mantle velocity structure beneath the North China Craton: implications for lithospheric thinning. Geophys J Int, 2009, 177: 1279–1283

    Article  Google Scholar 

  14. Yang C H, Xu W L, Yang D B, et al. Petrogenesis of Mesozoic high-Mg diorites in western Shandong: Evidence from chronology and petro-geochemistry. J China Univ Geosci, 2005, 16: 297–308

    Google Scholar 

  15. Yang C H, Xu W L, Wang W, et al. Petrogenesis of Shangyu gabbrodiorites in western Shandong: Geochronological and geochemical evidence. Sci China Ser D-Earth Sci, 2008, 51: 481–492

    Article  Google Scholar 

  16. Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241–254

    Article  Google Scholar 

  17. Pei F P, Xu W L, Wang Q H, et al. Mesozoic basalt and mineral chemistry of the mantle derived xenocrysts in Feixian, western Shandong, China: Constraints on nature of Mesozoic lithospheric mantle (in Chinese with English abstract). Geol J China Univ, 2004, 10: 88–97

    Google Scholar 

  18. Xu W L, Wang D Y, Wang Q H, et al. Petrology and geochemistry of two types of mantle-derived xenoliths in Mesozoic diorite from western Shandong Province (in Chinese with English abstract). Acta Petrol Sin, 2003, 19: 623–636

    Google Scholar 

  19. Xu W L, Wang D Y, Gao S, et al. Discovery of dunite and pyroxenite xenoliths in Mesozoic diorite at Jinling, western Shandong and its significance. Chin Sci Bull, 2003, 48: 1599–1604

    Google Scholar 

  20. Xu W L, Zhou Q J, Pei F P, et al. Recycling of lower continental crust in an intra-continental setting: Mineral chemistry and oxygen isotope insights from websterite xenoliths in the North China Craton. Mineral Mag, 2011, 75: 2197

    Google Scholar 

  21. Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55–88

    Article  Google Scholar 

  22. Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 2001, 107: 45–73

    Article  Google Scholar 

  23. Dong Z X. Yanshanian Intrusion in the Central Shandong and Mineralization (in Chinese). Beijing: Geological Publishing House, 1987. 26–74

    Google Scholar 

  24. Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103–119

    Article  Google Scholar 

  25. Yang D B, Xu W L, Wang Q H, et al. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution in the eastern North China Craton. Lithos, 2010, 114: 200–216

    Article  Google Scholar 

  26. Xu W L, Zheng C Q, Wang D Y, et al. The discovery of mantle-and crust-derived xenoliths in Mesozoic trachybasalts from western Liaoning and their geological implication (in Chinese with English abstract). Geol Rev, 1999, 45(Sup): 444–449

    Google Scholar 

  27. Han Z Z, Fu Q. Genesis of the deep vein and xenolith from Qingdao and Zhucheng and its tectonic background (in Chinese with English abstract). Trans Oceanol Limn, 1993, 2: 50–58

    Google Scholar 

  28. E M L, Zhao D S. Cenozoic Basalts and Deep-seated Rock Xenoliths in Eastern China (in Chinese). Beijing: Science Press, 1987. 1–490

    Google Scholar 

  29. Xu W L, Chi X G, Yuan C, et al. Mesozoic Diorites and Crust-derived Xenoliths in the Center of Eastern North China Craton (in Chinese). Beijing: Geological Publishing House, 1993. 1–164

    Google Scholar 

  30. Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609–637

    Article  Google Scholar 

  31. Xu W L, Wang D Y, Wang Q H, et al. 40Ar/39Ar dating of hornblende and biotite in Mesozoic intrusive complex from the North China Block: Constrains on the time of lithospheric thinning (in Chinese with English abstract). Geochemica, 2004, 33: 221–231

    Google Scholar 

  32. Pouchou J L, Pichoir F. A new model for quantitative X-ray microanalysis. Part I. Application to the analysis of homogeneous samples. Rech Aerosp, 1984, 5: 13–38

    Google Scholar 

  33. Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34–43

    Article  Google Scholar 

  34. Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 2010, 51: 537–571

    Article  Google Scholar 

  35. Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Sci China Ser D-Earth Sci, 2009, 52: 1262–1278

    Article  Google Scholar 

  36. Liu X M. Geochemical research on the Mesozoic crust-mantle interaction in the North China Craton (in Chinese with English abstract). Doctoral Dissertation. Xi’an: Northwest University, 2004. 8–10

    Google Scholar 

  37. Walker R J, Prichard H M, Ishiwatari A, et al. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim Cosmochim Acta, 2002, 66: 329–345

    Article  Google Scholar 

  38. Shirey S B, Walker R J. Carius tube digestions for low-blank rhenium-osmium analysis. Anal Chem, 1995, 67: 2136–2141

    Article  Google Scholar 

  39. Cohen A S, Waters F J. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analyt Chim Acta, 1996, 332: 269–275

    Article  Google Scholar 

  40. Wang D Y, Xu W L, Feng H, et al. Nature of late Mesozoic lithospheric mantle in western Liaoning Province: Evidence from basalt and mantle-derived xenoliths (in Chinese with English abstract). J Jilin Univ (Earth Sci Ed), 2002, 32: 319–324

    Google Scholar 

  41. Wang W. Evolution of Mesozoic and Cenozoic lithospheric mantle in Eastern North China Craton-Evidence from igneous rocks and their deep-seated xenoliths and xenocrysts (in Chinese with English abstract). Doctoral Dissertation. Changchun: Jilin University, 2008. 1–219

    Google Scholar 

  42. Xu W L, Yang D B, Pei F P, et al. Petrogenesis of Fushan high-Mg# diorites from the southern Taihang Mts. in the central North China Craton: Resulting from interaction of peridotite-melt derived from partial melting of delaminated lower continental crust (in Chinese with English abstract). Acta Petrol Sin, 2009, 25: 1947–1961

    Google Scholar 

  43. Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. New York: Elsevier Science Publishing Company Inc, 1984. 63–114

    Google Scholar 

  44. Sun S S, McDonough, W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Pub, 1989, 42: 313–345

  45. Carswell D A. Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: A review. Lithos, 1980, 13: 121–138

    Article  Google Scholar 

  46. Mattey D, Lowry D, Macpherson C. Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett, 1994, 128: 231–241

    Article  Google Scholar 

  47. Schulze D J, Harte B, Valley J W, et al. Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature, 2003, 423: 68–70

    Article  Google Scholar 

  48. Zheng J P. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning (in Chinese). Wuhan: China University of Geosciences Press, 1999. 1–127

    Google Scholar 

  49. Zheng J P, Zhao L. Geochemistry of kimberlites in North China platform. In: Chi J S, Lu F X, eds. Kimberlites and Palaeozoic Mantle Beneath North China Platform (in Chinese). Beijing: Science Press, 1996. 133–178

    Google Scholar 

  50. Walker R J, Carlson R W, Shirey S B, et al. Os, Sr, Nd and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Gemochim Cosmochim Acta, 1989, 53: 1538–1595

    Google Scholar 

  51. Liu J G, Rudnick R L, Walker R J, et al. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochim Cosmochim Acta, 2011, 75: 3881–3902

    Article  Google Scholar 

  52. Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 2000, 407: 502–506

    Article  Google Scholar 

  53. Kelemen P B, Dick J B, Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358: 635–641

    Article  Google Scholar 

  54. Rudnick R L, Mcdonough W F, Chappell B W. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet Sci Lett, 1993, 114: 463–475

    Article  Google Scholar 

  55. Klemme S, van der Laan S R, Foley S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 1995, 133: 439–448

    Article  Google Scholar 

  56. Neumann E R, Wulff-Pedersen E. The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol, 1997, 38: 1513–1539

    Article  Google Scholar 

  57. Shaw C S J. Dissolution of orthopyroxene in basaltic magma between 0.4 and 2 GPa: Further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib Mineral Petrol, 1999, 135: 114–132

    Article  Google Scholar 

  58. Coltori M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 1999, 40: 133–165

    Article  Google Scholar 

  59. Irving A J. Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci, 1980, 280A: 389–426

    Google Scholar 

  60. Green D H, Wallace M E. Mantle metasomatism by ephemeral carbonatite melts. Nature, 1988, 336: 459–462

    Article  Google Scholar 

  61. Zinngrebe F, Foley S F. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: Evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol, 1995, 122: 79–96

    Article  Google Scholar 

  62. Xu Y G, Mercier J C, Menzies M A, et al. K-rich glass-bearing wehrlite xenoliths from Yitong, Northeastern China: Petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol, 1996, 125: 406–420

    Article  Google Scholar 

  63. Gorring M, Kay S M. Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implications for lithospheric processes and Neogene plateau magmatism. Contrib Mineral Petrol, 2000, 140: 55–72

    Article  Google Scholar 

  64. Beard A D, Downes H, Mason P R D, et al. Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths. Lithos, 2007, 94: 1–24

    Article  Google Scholar 

  65. Yu S Y, Xu Y G, Huang X L, et al. Characteristics of melt-rock reaction in Shuangliao peridotite xenoliths and their implications to mantle metasomatism (in Chinese with English abstract). Acta Petrol Mineral, 2007, 23: 213–222

    Google Scholar 

  66. Frey F A, Prinz M. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett, 1978, 38: 129–176

    Article  Google Scholar 

  67. Roden M F, Shimizu N. Ion microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado plateau provinces. J Geophys Res, 1993, 98(B8): 14091–14108

    Article  Google Scholar 

  68. Ramos F C, Wolff J A, Tollstrup L. Measuring 87Sr/86Sr variation in minerals and groundmass from basalts using LA-MC-ICPMS. Chem Geol, 2004, 211: 135–158

    Article  Google Scholar 

  69. Xu W L, Yang D B, Gao S, et al. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem Geol, 2010, 270: 257–273

    Article  Google Scholar 

  70. Xu W L, Wang C G, Wang F, et al. Dunite xenoliths and olivine xenocrysts in gabbro from southern Taihang Mountains: Characteristics of Mesozoic lithospheric mantle in central China. J Earth Sci, 2010, 21: 692–710

    Article  Google Scholar 

  71. Ringwood A E, Green D H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics, 1966, 3: 383–427

    Article  Google Scholar 

  72. Kelemen P B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral Petrol, 1995, 120: 1–19

    Article  Google Scholar 

  73. Liu Y S, Gao S, Lee C T, et al. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 2005, 234: 39–57

    Article  Google Scholar 

  74. Sobolev A V, Hofmann A W, Nikogosian I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa Lavas. Nature, 2000, 404: 986–990

    Article  Google Scholar 

  75. Prouteau G, Scaillet B, Pichavant M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 2001, 410: 197–200

    Article  Google Scholar 

  76. Wang Q H, Xu W L, Yang D B, et al. Geochemical characteristics for trace element of mineral in eclogite inclusions separated out of Mesozoic intrusive complex from southeastern margin of North China Block and its significances (in Chinese with English abstract). Acta Petrol Sin, 2011, 27: 1131–1150

    Google Scholar 

  77. Yang D B, Xu W L, Pei F P, et al. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 2011, 136-139: 246–260

    Article  Google Scholar 

  78. Pei F P, Xu W L, Yang D B, et al. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: Constraints on the spatial extent of destruction of the North China Craton. J Asian Earth Sci, 2011, 40: 636–650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenLiang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Xu, W., Yang, D. et al. Modification of the lithospheric mantle by melt derived from recycled continental crust evidenced by wehrlite xenoliths in Early Cretaceous high-Mg diorites from western Shandong, China. Sci. China Earth Sci. 55, 1972–1986 (2012). https://doi.org/10.1007/s11430-012-4533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4533-x

Keywords

Navigation