Skip to main content
Log in

Observations of Gobi aeolian transport and wind fetch effect

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The wind fetch effect is important to wind erosion and aeolian transport and controls aeolian flux. It is useful to study the wind fetch effect in determining the aeolian transport mechanism and improving our knowledge of aeolian physics and wind erosion. In this paper, multichannel samplers measure aeolian transport at different heights above an artificial Gobi surface in the southeastern region of the Tengger Desert. The results show that aeolian transport flux can be expressed as an exponential function of height. Wind fetch obviously affects aeolian flux and aeolian transport. The coefficients and relative decay rate of aeolian flux decrease and then increase with increasing wind fetch distance. Aeolian transport depends on the height and fetch distance; aeolian transport increases and then decreases with increasing fetch distance, reaching a maximum at a fetch distance of about 34 m at the very near surface. The fetch distance of maximum aeolian transport tends to increase with height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gillette D A, Herbert G, Stockton, et al. Causes of the fetch effect in wind erosion. Earth Surf Proc Land, 1996, 21: 641–659

    Article  Google Scholar 

  2. Bauer B O, Davidson-Arnott R G D, Hesp P A. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology, 2009, 105: 106–116

    Article  Google Scholar 

  3. Dong Z B, Wang H T, Liu X P, et al. The blown sand flux over a sandy surface: A wind tunnel investigation on the fetch effect. Geomorphology, 2004, 57: 117–127

    Article  Google Scholar 

  4. Bauer B O, Davidson-Arnott R G D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology, 2002, 49: 89–108

    Article  Google Scholar 

  5. Davidson-Arnott R G D, Yang Y Q, Ollerhead J, et al. The effects of surface moisture on aeolian sediment transport threshold and mass flux on a beach. Earth Surf Proc Land, 2008, 33: 55–74

    Article  Google Scholar 

  6. Stout J E. Wind erosion within a simple field. T Am Soc Agr Eng, 1990, 33: 1597–1600

    Google Scholar 

  7. Delgado-Fernandez I. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Res, 2010, doi: 10.1016/j.aeolia.2010.04.001

  8. Jackson D W T, Cooper J A G. Beach fetch distance and aeolian sediment transport. Sedimentology, 1999, 46: 517–522

    Article  Google Scholar 

  9. Li Z S, Zhang Q F. Evolution of streamwise sand transport with distance (in Chinese). J Desert Res, 2006, 26: 189–193

    Google Scholar 

  10. Qu J J, Huang N, Ta W Q, et al. Structure characteristics of Gobi sand-drift and its significance (in Chinese). Adv Earth Sci, 2005, 20: 19–23

    Google Scholar 

  11. Fryear D W, Saleh A. Wind erosion: Field length. Soil Sc, 1996, 161: 398–404

    Article  Google Scholar 

  12. Williams G. Some aspects of the eolian saltation load. Sedimentology, 1964, 3: 257–287

    Article  Google Scholar 

  13. Fryrear D W, Saleh A. Field wind erosion: Vertical distribution. Soil Sc, 1993, 155: 294–300

    Article  Google Scholar 

  14. Dong Z B, Qian G Q, Luo W Y, et al. Analysis of the mass flux profiles of an aeolian saltating cloud. J Geophy Res, 2006, 111: D16111

    Article  Google Scholar 

  15. Kind R J. One-dimensional aeolian suspension above beds of loose particles—A new concentration profile equation. Atmos Environ, 1992, 26: 927–931

    Article  Google Scholar 

  16. Gillies J A, Berkofsky L. Eolian Suspension above the saltation layer, the concentration profile. J Sediment Res, 2004, 74: 176–183

    Article  Google Scholar 

  17. Nickling W G. Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian. J Earth Sci, 1978, 15: 1069–1084

    Article  Google Scholar 

  18. Shao Y P, Leslie L M. Wind erosion prediction over the Australian continent. J Geophy Res, 1997, 102: 30091–30105

    Article  Google Scholar 

  19. Juan E P, Buschiazzo D E, Zobeck T M. Comparison of different mass transport calculation methods for wind erosion quantification purposes. Earth Surf Proc Land, 2010, 35: 1548–1555

    Article  Google Scholar 

  20. Nordstrom K F, Jackson N L. Effect of source width and tidal elevation changes on aeolian transport on an estuarine beach. Sedimentology, 1992, 39: 769–778

    Article  Google Scholar 

  21. Van der Wal D. Effects of fetch and surface texture on aeolian sand transport on two nourished beaches. J Arid Environ, 1998, 39: 533–547

    Article  Google Scholar 

  22. Lynch K, Jackson D W T, Cooper J A G. Aeolian fetch distance and secondary airflow effects: The influence of micro-scale variables on meso-scale foredune development. Earth Surf Proc Land, 2008, 33: 991–1005

    Article  Google Scholar 

  23. Davidson-Arnott R G D, Dawson J C. Moisture and fetch effects on rates of aeolian sediment transport, Skallingen, Denmark. Proceedings Canadian Coastal Conference. Canadian Coastal Science and Engineering Association, Ottawa, Canada, 2001. 309–321

  24. Farrell E J, Sherman D J. Process-scaling issues for aeolian transport modeling in field and wind tunnel experiments: Roughness length and mass flux distributions. J Coastal Res, 2006, 39: 384–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengCai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Dong, Z. & Zhao, A. Observations of Gobi aeolian transport and wind fetch effect. Sci. China Earth Sci. 55, 1323–1328 (2012). https://doi.org/10.1007/s11430-011-4326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4326-7

Keywords

Navigation