Skip to main content
Log in

Significant carbon isotope excursions in the Cambrian and their implications for global correlations

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The existing δ 13C data in the Cambrian from different regions of the world are analyzed here. There are four well-documented carbon isotope excursions with global significance. In ascending order, they are: (1) a large negative excursion, comparable to “BACE” (BAsal Cambrian Carbon isotope Excursion) event, which occurs near the Precambrian-Cambrian boundary with a magnitude of 4‰–10‰ (PDB); (2) the “ZHUCE” (ZHUjiaqing Carbon isotope Excursion) event, a distinct positive excursion (over 5‰) that can be recognized at the Fortunian Stage to Stage 2 transition; (3) another strong negative one, so-called “ROECE” (Redlichiid-Olenellid Extinction Carbon isotope Excursion) event, shifting at the interval between Series 2 and Series 3, peaking at −3‰–−5‰ (PDB); (4) the famous Steptoean positive carbon isotope excursion (SPICE), which has been widely identified at the base of Furongian Series, Paibian Stage, with an amplitude about 4‰ (PDB). The four sharp δ 13C shifts correlate well with coeval paleoceanographic changes and bioevents. Besides, there are some δ 13C excursions from a few sections in previous studies, and more data are required to identify whether they are global or regional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tucker M E. Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature, 1986, 319: 48–50

    Article  Google Scholar 

  2. Magaritz M M, Holser, W T, Kirschvink J L. Carbon-isotope events across the Precambrian boundary on the Siberian Platform. Nature, 1986, 320: 258–259

    Article  Google Scholar 

  3. Lambert I B, Walter M R, Zang W L, et al. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 1987, 325: 140–142

    Article  Google Scholar 

  4. Magaritz M M, Kirschvink J L, Latham A J, et al. Precambrian/Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology, 1991, 19: 847–850

    Article  Google Scholar 

  5. Brasier M D, Magaritz M, Corfield R, et al. The carbon- and oxygenisotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geol Mag, 1990, 127: 319–332

    Article  Google Scholar 

  6. Brasier M D, Corfield R M, Derry L A, et al. Multiple δ 13C excursions spanning the Cambrian exploration to the Botomian crisis in Siberia. Geology, 1994, 22: 455–458

    Article  Google Scholar 

  7. Brasier M D, Shields G, Kuleshov V N, et al. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-Early Cambrian of southwest Mongolia. Geol Mag, 1996, 133: 445–485

    Article  Google Scholar 

  8. Narbonne G M, Kaufman A J, Knoll A H. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, Northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Geol Soc Am Bull, 1994, 106: 1281–1291

    Article  Google Scholar 

  9. Kaufman A J, Knoll A H, Semikhatov M A, et al. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia. Geol Mag, 1996, 133: 509–533

    Article  Google Scholar 

  10. Kimura H, Matsumoto R, Kakuwa Y, et al. The Vendian-Cambrian δ 13C record, North Iran: Evidence for overturning of the ocean before the Cambrian Explosion. Earth Planet Sci Lett, 1997, 147: 1–7

    Article  Google Scholar 

  11. Corsetti F A, Hagadorn J W. Precambrian-Cambrian transition: Death Valley, United States. Geology, 2000, 28: 299–302

    Article  Google Scholar 

  12. Kouchinsky A, Bengtson S, Pavlov V, et al. Carbon isotope stratigraphy of the Precambrian-Cambrian Sukharikha River section, northwestern Siberian Platform. Geol Mag, 2007, 144: 609–618

    Article  Google Scholar 

  13. Li D, Ling H F, Jiang S Y, et al. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: Implications for global correlation. Geol Mag, 2009, 146: 465–484

    Article  Google Scholar 

  14. Zhu M Y, Babcock L E, Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld, 2006, 15: 217–222

    Article  Google Scholar 

  15. Saltzman M R, Runnegar B, Lohnman K C. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geol Soc Am Bull, 1998, 110: 285–297

    Article  Google Scholar 

  16. Scotese C R. Cambrian. http://www.scotese.com, (PALEOMAP website). 2002

  17. Yang R D, Zhu L J, Wang S J, et al. Negative Carbon Isotope Excursion in the Base Cambrian of Guizhou Province, China: Implication for Biological and Strat raphical Significance (in Chinese). Acta Geol Sin, 2005, 79: 157–164

    Article  Google Scholar 

  18. Khomentovsky V V, Karlova G A. Biostratigraphy of the Vendian-Cambrian beds and the Lower Cambrian boundary in Siberia. Geol Mag, 1993, 130: 29–45

    Article  Google Scholar 

  19. Pelechaty S M, Grotzinger J P, Kashirtsev V A, et al. Chemostratigraphic and sequence stratigraphic constraints on Vendian-Cambrian basin dynamics, Northeast Siberian Craton. J Geol, 1996, 104: 543–563

    Article  Google Scholar 

  20. Pelechaty S M, Kaufman A J, Grotzinger J P. Evaluation of δ 13C chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia. Geol Soc Am Bull, 1996, 108: 992–1003

    Article  Google Scholar 

  21. Grotzinger J P, Bowring S A, Saylor B Z, et al. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 1995, 270: 598–604

    Article  Google Scholar 

  22. Amthor J E, Grotzinger J P, Schröder S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003, 31: 431–434

    Article  Google Scholar 

  23. Brasier M D, Anderson M M, Corfield R M. Oxygen and carbon isotope stratigraphy of Early Cambrian carbonates in southeastern Newfoundland and England. Geol Mag, 1992, 129: 265–279

    Article  Google Scholar 

  24. Qian Y, He T G. Re-discussion on the sections of pre-Cambrian-Cambrian boundary in East Yunnan Province (in Chinese). Acta Micropalaeontol Sin, 1996, 13: 225–240

    Google Scholar 

  25. Bartley J K, Pope M, Knoll A H, et al. A Vendian-Cambrian boundary succession from the northwestern margin of the Siberian Platform: Stratigraphy, palaeontology, chemostratigraphy and correlation. Geol Mag, 1998, 135: 473–494

    Article  Google Scholar 

  26. Knoll A H, Hayes J M, Kaufman A J, et al. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 1986, 321: 832–838

    Article  Google Scholar 

  27. Qian Y, Li G X, Zhu M Y. The Meishucunian Stage and its small shelly fossil sequences in China. Acta Palaeontol Sin, 2001, 40(Suppl): 54–62

    Google Scholar 

  28. Brasier M D. China and Palaeotethyan belt (India, Pakistan, Iran, Kazakhstan, and Mongolia). In: Cowie J W, Brasier M D, eds. The Precambrian-Cambrian Boundary. Oxford: Clarendon Press, 1989. 117–165

    Google Scholar 

  29. Zhu M Y, Li G X, Zhang J M. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on theYangtze Platform and global correlations: Comment. Geology, 2001, 29: 871

    Article  Google Scholar 

  30. Steiner M, Li G X, Qian Y, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 67–99

    Article  Google Scholar 

  31. Jiang Z W, Brasier M D, Hamdi B. Correlation of the meishucunian stage in South Asia (in Chinese). Acta Geol Sin, 1988, 3: 191–199

    Google Scholar 

  32. Knoll A H, Grotzinger J P, Kaufman A J, et al. Integrated approaches to terminal Proterozoic stratigraphy: An example from the Olenek Uplift, northeastern Siberia. Precambrian Res, 1995, 73: 251–270

    Article  Google Scholar 

  33. Bowring S A, Grotzinger J P, Isachsen C E, et al. Calibrating rates of Early Cambrian evolution. Science, 1993, 261: 1293–1298

    Article  Google Scholar 

  34. Maloof A C, Ramezani J, Bowring S A, et al. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Canadian J Earth Sci, 2010, 42: 2195–2196

    Article  Google Scholar 

  35. International Commission of Stratigraphy. International Stratigraphic Chart. http://www. stratigraphy.org, 2009

  36. Brasier M D. On mass extinctions and faunal turnover near the end of the Precambrian. In: Donovan S K, ed. Mass Extinctions: Process and Evidence. London: Belhaven Press, 1989. 73–88

    Google Scholar 

  37. Brasier M D. The basal Cambrian transition and Cambrian bio-events (from terminal proterozoic extinctions of Cambrian biomeres). In: Walliser O H, ed. Global Events and Event Stratigraphy in the Phanerozoic. Berlin: Springer-Verlag, 1995. 113–138

    Google Scholar 

  38. Kimura H, Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 2001, 29: 995–998

    Article  Google Scholar 

  39. Kump L R. Interpreting carbon-isotope excursions: Strangelove oceans. Geology, 1991, 19: 299–302

    Article  Google Scholar 

  40. Shen Y A, Schidlowski M. New C isotope stratigraphy from southwest China: Implications for the placement of Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 2000, 28: 623–626

    Article  Google Scholar 

  41. Zhou C M, Zhang J M, Li G X, et al. Carbon and oxygen isotope record of the early Cambrian from the Xiaotan section, Yunnan, South China (in Chinese). Sci Geol Sin, 1997, 32: 201–211

    Google Scholar 

  42. Gao J Y, Sun S, Hsu K J, et al. Boundary event between the preCambrian and Cambrian periods in special reference to carbon and oxygen isotopes. Geochimica, 1988, 3: 257–266

    Google Scholar 

  43. Aharon P, Schidlowski M, Singh I B. Chronostratigraphic markers in the end-Precambrian isotope record of the Lesser Himalaya. Nature, 1987, 327: 699–702

    Article  Google Scholar 

  44. Kouchinsky A, Bengtson S, Missarzhevsky V V, et al. Carbon isotope stratigraphy and the problem of a pre-Tommotian Stage in Siberia. Geol Mag, 2001, 138: 387–396

    Article  Google Scholar 

  45. Knoll A H, Kaufman A J, Semikhatov M A, et al. Sizing up the sub-Tommotian unconformity in Siberia. Geology, 1995, 23: 1139–1143

    Article  Google Scholar 

  46. Kouchinsky A, Bengtson S, Pavlov V, et al. Pre-Tommotian age of the lower Pestrotsvet Formation in the Selinde section on the Siberian platform: carbon isotopic evidence. Geol Mag, 2005, 142: 319–325

    Article  Google Scholar 

  47. Maloof A C, Schrag D P, Crowley J L, et al. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Canadian J Earth Sci, 2005, 42: 2195–2216

    Article  Google Scholar 

  48. Yang R D, Zhu L J, Wang S J, et al. Negative abnormal signals of carbon isotope near the Lower-Middle Cambrian boundary in Taijiang, Guizhou Province: The biologic and stratigraphic significances. Sci China Ser D-Earth Sci, 2002, 32: 500–506

    Google Scholar 

  49. Wotte T, Álvaro J J, Shields G A, et al. C-, O- and Sr-isotope stratigraphy across the Lower-Middle Cambrian transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 256: 47–70

    Article  Google Scholar 

  50. Zhu M Y, Zhang J M, Li G X, et al. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions. Geobios, 2004, 37: 287–301

    Article  Google Scholar 

  51. Guo Q J, Strauss H, Liu C Q, et al. A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 285: 143–151

    Article  Google Scholar 

  52. Guo Q J, Strauss H, Liu C Q, et al. Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China. Geol Mag, 2005, 142: 723–733

    Article  Google Scholar 

  53. Zuo J X, Peng S C, Zhu X J. Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, South China, and its geological implications (in Chinese). Geochimica, 2008, 37: 118–128

    Google Scholar 

  54. Álvaro J J, Ahlberg P, Axheimer N. Skeletal carbonate productivity and phosphogenesis at the Lower-Middle Cambrian transition of Scania, southern Sweden. Geol Mag, 2010, 147: 59–76

    Article  Google Scholar 

  55. Montañez I P, Osleger D A, Banner J L, et al. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 2000, 10: 1–7

    Google Scholar 

  56. Dilliard K A. Stable isotope geochemistry of the lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for ocean chemistry and secular curve generation. Palaeogeogr Palaeoclimato Palaeoecol, 2007, 256: 174–194

    Article  Google Scholar 

  57. Shabanov Y Y, Korovnikov I V, Pereladov V S, et al. The section of the Kuonamka Formation of the Molodo River—A candidate for a global stratigraphy of the lower boundary of the Middle Cambrian (East Siberian Platform). In: The 13th International Field Conference of the Cambrian Subdivision Working Group, eds. Cambrian Sections of the Siberian Platform-Stratotype Candidates for An International Stratigraphic Scaling (Stratigraphy and Palaeontology). Yakutia, 2008. 60–70

  58. Brasier M D, Sukhov S S. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data. Canadian J Earth Sci, 1998, 35: 353–373

    Article  Google Scholar 

  59. Brasier M D. Towards a carbon isotope stratigraphy of the Cambrian System: Potential of the Great Basin succession. Geol Soc London Spec Publ, 1993, 70: 341–350

    Article  Google Scholar 

  60. Saltzman M R, Ripperdan R L, Brasier M D, et al. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic matter burial and sea level. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 162: 211–223

    Article  Google Scholar 

  61. Kouchinsky A, Bengtson S, Gallef Y, et al. The SPICE carbon isotope excursion in Siberia: A combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform. Geol Mag, 2008, 145: 609–622

    Article  Google Scholar 

  62. Glumac B, Walker K R. A late Cambrian positive carbon-isotope excursion in the southern Appalachians: Relation to biostratigraphy, sequence stratigraphy, environments of deposition, and diagenesis. J Sediment Res, 1998, 68: 1212–1222

    Google Scholar 

  63. Ripperdann R L, Magaritz M, Nicoll R S, et al. Simultaneous changes in carbon isotopes, sea-level and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, 1992, 20: 1039–1042

    Article  Google Scholar 

  64. Lindsay J F, Kruse P D, Green O R, et al. The Neoproterozoic-Cambrian record in Australia: A stable isotope study. Precambrian Res, 2005, 143: 113–133

    Article  Google Scholar 

  65. Buggisch W, Keller M, Lehnert O. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 195: 357–373

    Article  Google Scholar 

  66. Ahlberg P, Axheimer N, Eriksson M E, et al. High-resolution trilobite biostratigraphy and carbon isotope stratigraphy of the middle Cambrian-lower Furongian of Baltica. In: Jago J B, ed. Material of the 11th International conference of the Cambrian Stage Subdivision Working Group, South Australia: Abstracts 84. Geol Soc Australia, 2006. 5

    Google Scholar 

  67. Buggisch W. Stable carbon isotopes of the Late Cambrian Minaret Formation, Ellsworth Mountains, West Antarctica. In: Scientific Committee on Antarctic Research Open Science Conference, Hobart, Australia, 2006. 210

  68. Walcott C D. The Cambrian faunas of China, Research in China 3. Washington D.C.: Carnegie Ins Washington Publ, 1913. 375

    Google Scholar 

  69. Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocen. Paleoceanography, 1995, 10: 965–971

    Article  Google Scholar 

  70. Howley R A, Jiang G Q. The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin, western United States. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 296: 138–150

    Article  Google Scholar 

  71. Zhu M Y, Strauss H, Shields G A. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, R., Deng, S. & Zhang, X. Significant carbon isotope excursions in the Cambrian and their implications for global correlations. Sci. China Earth Sci. 54, 1686–1695 (2011). https://doi.org/10.1007/s11430-011-4313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4313-z

Keywords

Navigation