Skip to main content
Log in

Numerical simulations on origin of Galilean moons’ magnetic anomalies

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Galileo mission detected the magnetic anomalies originated from Galilean moons. These anomalies are likely generated in the moons’ interiors, under the influence of a strong ambient Jovian field. Among various possible generation mechanisms of the anomalies, we focus on magneto-convection and dynamos in the interiors via numerical simulation. To mimic the electromagnetic environment of the moons, we introduce in our numerical model an external uniform magnetic field B 0 with a fixed orientation but varying field strength. Our results show that a finite B 0 can substantially alter the dynamo processes inside the core. When the ambient field strength B 0 increases to approximately 40% of the field generated by the pure dynamo action, the convective state in the core changes significantly: the convective flow decreases by 80% in magnitude, but the differential rotation becomes stronger in much of the fluid layer, leading to a stronger field generated in the core. The field morphologies inside the core tend to align with the ambient field, while the flow patterns show the symmetry-breaking effect under the influence of B 0. Furthermore, the generated field tends to be temporally more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Showman A P, Malhotra R. The Galilean satellites. Science, 1999, 286: 77–84

    Article  Google Scholar 

  2. Khurana K K, Kivelson M G, et al. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 1998, 395: 777–780

    Article  Google Scholar 

  3. Saur J, Neubauer F M, et al. Interpretation of Galileo’s Io plasma and filed observations: I0, I24 and I27 flybys and close polar passes. J Geophys Res, 2002, 107: 1422–1439

    Article  Google Scholar 

  4. Schubert G, Zhang K K, et al. The magnetic field and internal structure of Ganymede. Nature, 1996, 384: 544–545

    Article  Google Scholar 

  5. Kivelson M G, Khurana K K, et al. Europa and Callisto: Induced or intrinsic magnetic fields in a periodically varying plasma environment. J Geophys Res, 1999, 104: 4609–4625

    Article  Google Scholar 

  6. Kivelson M G, Khurana K K, et al. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 1996, 384: 537–541

    Article  Google Scholar 

  7. Zimmer C, Khurana K K, Kivelson M G. Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus, 2000, 147: 329–347

    Article  Google Scholar 

  8. Kivelson M G, Khurana K K. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 2000, 289: 1340–1343

    Article  Google Scholar 

  9. Jiao L G, Kuang W J, Ma S Z. Magnetic anomalies observed by Galilean satellites and interpretations (in Chinese). Prog Geophys, 2010, 25: 1259–1272

    Google Scholar 

  10. Kuang W J, Bloxham J. An Earth-like numerical dynamo model. Nature, 1997, 389: 371–374

    Article  Google Scholar 

  11. Kuang W J, Bloxham J. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action. J Comput Phys, 1999, 153: 51–81

    Article  Google Scholar 

  12. Kuang W J, Chao B F. Topographic core-mantle coupling in geodynamo modeling. Geophys Res Lett, 2001, 28: 1871–1874

    Article  Google Scholar 

  13. Stanley S, Bloxham J. Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus, 2006, 184: 556–572

    Article  Google Scholar 

  14. Kuang W J, Jiang W Y, Wang T Y. Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations. Geophys Res Lett, 2008, 35: 14204–14208

    Article  Google Scholar 

  15. Wang T Y, Kuang W J, Ma S Z. Numerical simulation of Martian historical dynamo: Impact of the Rayleigh number on the dynamo state. Sci China Ser D-Earth Sci, 2009, 52: 402–410

    Article  Google Scholar 

  16. Kuang W J. Force balances and convective state in the earth’s core. Phys Earth Planet Inter, 1999, 116: 65–79

    Article  Google Scholar 

  17. Taylor J B. The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc R Soc Lon Ser A, 1963, 274: 274–283

    Article  Google Scholar 

  18. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. New York: Dover Publications, 1981

    Google Scholar 

  19. Kivelson M G, Khurana K K, Volwerk M. The permanent and inductive magnetic moments of Ganymede. Icarus, 2002, 157: 507–522

    Article  Google Scholar 

  20. Sarson G R, Jones C A, Zhang K K. Dynamo action in a uniform ambient field. Phys Earth Planet Inter, 1999, 111: 47–68

    Article  Google Scholar 

  21. Bullard E C, Freedman C, et al. The westward drift of the Earth’s magnetic field. Philos Trans R Soc Lond, 1950, A243: 67–92

    Google Scholar 

  22. Stevenson D J. Planetary magnetic fields. Earth Planet Sci Lett, 2003, 208: 1–11

    Article  Google Scholar 

  23. Bland M T, Showman A P, Tobie G. The production of Ganymede’s magnetic field. Icarus, 2008, 198: 384–399

    Article  Google Scholar 

  24. Glatzmaier G A. Geodynamo simulation-How realistic are they? Annu Rev Earth Planet Sci, 2002, 30: 237–257

    Article  Google Scholar 

  25. Tyler R H. Strong ocean tidal flow and heating on moons of the outer planets. Nature, 2008, 456: 770–773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiGuo Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, L., Kuang, W. & Ma, S. Numerical simulations on origin of Galilean moons’ magnetic anomalies. Sci. China Earth Sci. 54, 1754–1760 (2011). https://doi.org/10.1007/s11430-011-4276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4276-0

Keywords

Navigation