Skip to main content
Log in

Viscous lithospheric structure beneath Sumatra inferred from post-seismic gravity changes detected by GRACE

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Satellite gravity data of the regional rheological structure of the lithosphere in the vicinity of Sumatra is used as evidence to enable a better understanding of the regional geodynamic environment. The data is interpreted using the theory of post-seismic viscoelastic relaxation. Co- and post-seismic changes in the gravity field resulting from the 2004 M w9.3 Sumatra earthquake were calculated from Gravity Recovery and Climate Experiment (GRACE) satellite data. A spatial Gaussian filter, 500 km wide, was used in the calculation. The results indicate that there were significant co-seismic jumps in both uplifted and subducted regions. The magnitude of the jump in the subducted zone was ∼9×10−8 m/s2, more significant than the ∼2×10−8 m/s2 jump observed in the uplifted zone. However, a positive gravity change occurred in the uplifted zone very soon after the earthquake. The rheological structure of the lithosphere has a great effect on deformation and its determination is a fundamental part of developing reliable numerical simulations in geodynamics. Based on the temporally-variable gravity field observed by GRACE, the viscous lithospheric structure of the Sumatra area is investigated with a self-gravitating, half space, viscoelastic earth model. The estimated viscosity is of the order of 1.0×1018 Pa·s and there are differences in the rheological parameters on the two sides of the fault. The factors that affect the viscosity are discussed in connection with the tectonic structure of the Sumatra area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma Z J, Ye H. The Dec. 26, 2004 Sumatra-Andaman earthquake: Tectonic setting and the tsunami disaster (in Chinese). Earth Sci Front, 2005, 12: 281–287

    Google Scholar 

  2. Ammon C J, Chen J, Thio H, et al. Rupture process of the 2004 Sumatra- Andaman earthquake. Science, 2005, 308: 1133–1139

    Article  Google Scholar 

  3. Tsai V C, Nettles M, Ekström G, et al. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett, 2005, 32: L17304, doi: 10.1029/2005GL023813

    Article  Google Scholar 

  4. Han S C, Shum C K, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 2006, 313: 658–666

    Article  Google Scholar 

  5. Hoechner A, Babeyko A Y, Sobolev S V. Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami. Geophys Res Lett, 2008, 35: L08310, doi: 10.1029/2007GL033133

    Article  Google Scholar 

  6. Ogawa R, Heki K. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L06313, doi: 10.1029/2007GL029340

    Article  Google Scholar 

  7. Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L13302, doi: 10.1029/2007GL030356

    Article  Google Scholar 

  8. Panet I, Mikhailov V, Diament M, et al. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys J Int, 2007, 171: 177–190

    Article  Google Scholar 

  9. Sun W, Okubo S. Co-seismic deformations detectable by satellite gravitymissions—A case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain. J Geophys Res, 2004, 109: B04405, doi: 10.1029/2003JB002554

    Article  Google Scholar 

  10. Pollitz F F, Bürgmann R, Banerjee P. Postseismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophys J Int, 2006, 167: 397–420

    Article  Google Scholar 

  11. Pollitz F F, Banerjee P, Grijalva K, et al. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M=9.2 Sumatra earthquake. Geophys J Int, 2008, 173: 189–204

    Article  Google Scholar 

  12. de Linage C, Rivera L, Hinderer J, et al. Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys J Int, 2009, 176: 695–714

    Article  Google Scholar 

  13. Scholz C H, Molnar P, Johnson T. Detailed studies of the frictional sliding of granite and implications for the earthquake mechanisms. J Geophys Res, 1972, 77: 6392–6406

    Article  Google Scholar 

  14. Sheu S Y, Shieh C F. Viscoelastic-afterslip concurrence: A possible mechanism in the early post-seismic deformation of the M w7.6, Chi-Chi (Taiwan) earthquake. Geophys J Int, 2004, 159: 1112–1124

    Article  Google Scholar 

  15. Deng J, Gurnis M, Kanamori H, et al. Viscoelastic low in the lower crust after the 1992 Landers, California, earthquake. Science, 1998, 282: 1689–1692

    Article  Google Scholar 

  16. Árnadóttir T, Jónsson S, Pollitz F F, et al. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone. J Geophys Res, 2005, 110: B12308, doi: 10.1029/2005JB003701

    Article  Google Scholar 

  17. Melosh H, Raefsky A. The dynamic origin of subduction zone topography. Geophys J R astr Soc, 1980, 60: 8441–8451

    Google Scholar 

  18. Lorenzo M F, Roth F, Wang R. Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophys J Int, 2006, 164: 75–87

    Article  Google Scholar 

  19. Jonsson S, Segall P, Pedersen R, et al. Post-earthquake ground movements correlated to pore-pressure transients. Nature, 2003, 424: 179–183

    Article  Google Scholar 

  20. Masterlark T, Wang H F. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, Earthquakes. Bull Seism Soc Am, 2003, 92: 1470–1486

    Article  Google Scholar 

  21. Wahr J, Molenaar M, Bryan F. Time-variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 1998, 103: 30205–30230

    Article  Google Scholar 

  22. Wahr J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: first results. Geophys Res Lett, 2004, 31: L11501, doi: 10.1029/2004GL019779

    Article  Google Scholar 

  23. Chen J L, Wilson C R, Famiglietti J S, et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2005, 110: B08408, doi: 10.1029/2004JB003536

    Article  Google Scholar 

  24. Fantino E, Casotto S. Methods of harmonic synthesis for global geopotential models and their first-, second-, and third-order gradients. J Geod, 2009, 83: 595–619

    Article  Google Scholar 

  25. Franz B. Definition of functionals of the geopotential and their calculation from spherical harmonic models. Technical Report, Deutsches GeoForschungs Zentrum GFZ. 2009

  26. Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides: Insights from FES2004. Ocean Dyn, 2006, 56: 394–415

    Article  Google Scholar 

  27. McCarthy D D, Petit. G. IERS Conventions (2003). IERS Technical Note No. 32, Bundesamts für Kartogr und Geod, Frankfurt, Germany. 2003

    Google Scholar 

  28. Desai S D. Observing the pole tide with satellite altimetry, J Geophys Res, 2002, 107: 3186, doi: 10.1029/2001JC001224

    Article  Google Scholar 

  29. Bettadpur S. Gravity Recovery and Climate Experiment Level-2 Gravity Field Product User Handbook, Center for Space Research, Austin, Texas, 2007. Rep. GRACE 327-734

  30. Bettadpur S. CSR Level-2 processing standards document for product release 04, Center for Space Research, Austin, Texas, 2007. Rep. GRACE 327-742

  31. Jekeli C. Alternative methods to smooth the Earth’s gravity field. Technical Report, Department of Geodetic Science and Surveying, Ohio State University. 1981

  32. Han S C, Shum C K, Jekeli C, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int, 2005, 163: 18–25

    Article  Google Scholar 

  33. Chen J L, Wilson C R, Seo K W. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2006, 111: B06408, doi: 10.1029/ 2005JB004064

    Article  Google Scholar 

  34. Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophys Res Lett, 2006, 33: L08402, doi: 10.1029/2005GL025285

    Article  Google Scholar 

  35. Sasgen I, Martinec Z, Fleming K. Wiener optimal filtering of GRACE data. Stud Geophys Geod, 2006, 50: 499–508

    Article  Google Scholar 

  36. Zhang Z Z, Chao B F, Lu Y, et al. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys Res Lett, 2009, 36: L17311, doi: 10.1029/2009GL039459

    Article  Google Scholar 

  37. Chen J L, Wilson C R, Famiglietti J S, et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2005, 110: B08408, doi: 10.1029/2004JB003536

    Article  Google Scholar 

  38. Wang R, Lorenzo-Martin F, Roth F. PSGRN/PSCMP-A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci, 2006, 32: 527–541

    Article  Google Scholar 

  39. Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification. Geophys J Int, 1991, 105: 429–465

    Article  Google Scholar 

  40. Sun W, Okubo S, Fu G, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-Applicable to deformed earth surface and space-fixed point. Geophys J Int, 2009, 177: 817–833

    Article  Google Scholar 

  41. Banerjee P, Pollitz F, Nagarajan B, et al. Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull Seism Soc Am, 2007, 97: S86–S102

    Article  Google Scholar 

  42. Hirth G, Kohlstedt D L. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Inside the Subduction Factory. AGU Monograph, 2003, 138: 83–105

  43. Shi Y L, Cao J L. Effective viscosity of China continental lithosphere (in Chinese). Earth Sci Front, 2008, 15: 082–095

    Article  Google Scholar 

  44. Zhang C J, Cao J L, Shi Y L. Studying the viscosity of lower crust of Qinghai-Tibet Plateau according to post-seismic deformation. Sci China Ser D-Earth Sci, 2009, 52: 411–419

    Article  Google Scholar 

  45. Tanaka Y, Klemann V, Fleming K, et al. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth. Geophys J Int, 2009, 176: 715–739

    Article  Google Scholar 

  46. Cannelli V, Melini D, Piersanti A, et al. Post-seismic signature of the 2004 Sumatra earthquake on low-degree gravity harmonics. J Geophys Res, 2008, 113: B12414, doi: 10.1029/2007JB005296

    Article  Google Scholar 

  47. Čadek O, Fleitout L. Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography. Geophys J Int, 2003, 152: 566–580

    Article  Google Scholar 

  48. Gaherty J, Jordan T, Gee L. Seismic structure of the upper mantle in a central Pacific corridor. J Geophys Res, 1996, 101: 22291–22309

    Article  Google Scholar 

  49. Fu R S, Chang X H, Huang J H, et al. Regional gravity isostatic anomaly and small scale convection model in upper mantle (in Chinese). Chin J Geophys, 1994, 37(Suppl): 249–258

    Google Scholar 

  50. Ryder I, Parsons B, Wright T J, et al. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modeling. Geophys J Int, 2007, 169: 1009–1027

    Article  Google Scholar 

  51. Shen Z K, Zeng Y, Wang M, et al. Postseismic deformation modeling of the 2001 Kokoxili earthquake, western China. Geophys Res Abs, 2003, 5: 07840

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WuXing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Shi, Y., Sun, W. et al. Viscous lithospheric structure beneath Sumatra inferred from post-seismic gravity changes detected by GRACE. Sci. China Earth Sci. 54, 1257–1267 (2011). https://doi.org/10.1007/s11430-011-4217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4217-y

Keywords

Navigation