Skip to main content
Log in

Palynological evidence sheds new light on the age of the Liuqu Conglomerates in Tibet and its geological significance

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Liuqu Conglomerates consist of a suit of terrestrial molasse deposits formed in a foreland basin of the Himalaya-Tibet orogenic belt before the collision of India and Eurasia. These deposits record considerable geological information regarding the late tectonic evolution of the Neotethyan ocean. The palynological study of interlayers of mudstone and mud-sandstones indicates an Oligocene age. The palynological assemblage consists mainly of deciduous broad-leaved angiosperms, with some coniferous gymnosperms and evergreen broad-leaved angiosperms. The deposits reflect a broad-leaved deciduous forest or mixed with conifer-broad-leaved forest ecotypes, showing a warm-temperate or temperate zone climatic environment. This work provides significant new information about the tectonic evolution, paleogeography, and paleoenvironment of southern Tibet during the Cenozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gansser A. Geology of the Himalayas. London: John Wiley and Sons Ltd, 1964. 289

    Google Scholar 

  2. Nicolas A, Girardeau J, Marcoux J, et al. The Xigaze ophiolite (Tibet): A peculiar oceanic lithosphere. Nature, 1981, 294: 414–417

    Article  Google Scholar 

  3. Tapponnier P, Mercier J, Proust F, et al. The Tibetan side of the India-Eurasia collision. Nature, 1981, 294: 405–410

    Article  Google Scholar 

  4. Burg J P, Chen G. Tectonics and structure zonation of southern Tibet, China. Nature, 1984, 311: 219–223

    Article  Google Scholar 

  5. Girardeau J, Mercier J C, Zao Y. Structure of the Xigaze ophiolite, Yarlung Zangbo suture zone, southern Tibet, China: Genetic implications. Tectonics, 1985, 4: 267–288

    Article  Google Scholar 

  6. Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 1987, 98: 678–701

    Article  Google Scholar 

  7. Einsele G. The Xigaze forearc basin: Evolution and facies architecture (Cretaceous, Tibet). Sediment Geol, 1994, 90: 1–32

    Article  Google Scholar 

  8. Dürr S B. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol Soc Am Bull, 1996, 108: 669–684

    Article  Google Scholar 

  9. Rowley D B. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 1996, 145: 1–13

    Article  Google Scholar 

  10. Xiao X C, Wang J. A brief review of tectonic evolution and uplift of the Qinghai-Tibet Plateau (in Chinese with English abstract). Geol Rev, 1998, 44: 372–381

    Google Scholar 

  11. Xu J H, Sun S, Wang Q C, et al. Map of Tectonic Facies of China (1/4000000) (in Chinese). Beijing: Science Press, 1998. 1–155

    Google Scholar 

  12. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 2000, 28: 211–280

    Article  Google Scholar 

  13. Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev, 2006, 76: 1–131

    Article  Google Scholar 

  14. Pan G T, Wang L Q, Yin F G, et al. Charm of landing of plate tectonics on the continent as viewed from the study of the archipelagic arc-basin system (in Chinese with English abstract). Geol Lett, 2004, 23: 933–939

    Google Scholar 

  15. Pan G T, Wang L Q, Zhu D C. Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau (in Chinese with English abstract). Geol Bull, 2004, 23: 12–19

    Google Scholar 

  16. Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 2005, 24,(TC3001): 1–18, doi: 10.1029/2004 TC001729

    Google Scholar 

  17. Xu Z Q, Yang J S, Li H B, et al. The Qinghai-Tibeta Plateau and continental dynamics: A review on terrain tectonics, collisional oro genesis, and processes and mechanisms for the rise of the plateau (in Chinese with English abstract). Chin Geol, 2006, 33: 221–238

    Google Scholar 

  18. Liu X H. Structural feature of Yarlung Zangbo ophiolite zone and its tectonic significance (abs.). The 20th Himalaya-Karakoram-Tibet Workshop. Geol Alpine Mem, 2005, 44: 121

    Google Scholar 

  19. Liu X H. Re-examination of the Yarlung Zangbo suture zone: An alternative tectonic model (abs.). Proceeding of the Himalaya Karakunlun-Tibet Symposium, Hongkong, 2007. 63

  20. Liu X H, Ju Y T, Wei L J, et al. An alternative tectonic model for the Yarlung Zangbo suture zone. Sci China Earth Sci, 2010, 53: 27–41

    Article  Google Scholar 

  21. Aitchison J C, Abrajevitch A, Ali J R, et al. New insights into the evolution of the Yarlung Tsangpo suture zone, Xizang (Tibet), China. Episodes, 2002, 25: 90–94

    Google Scholar 

  22. Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide? J Geophys Res Solid Earth, 2007, 112: B05423, doi: 10.1029/2006JB004706

    Article  Google Scholar 

  23. Aitchison J C, Davis A M. Evidence for the multiphase nature of the India-Asia collision from the Yarlung Tsangpo suture zone, Tibet. In: Malpas J G, Fletcher C J N, eds. Aspects of the Tectonic Evolution of China. Geol Soc London Spec Pub, 2004, 226: 217–233

  24. Davis A M, Aitchison J C, Badengzhu B, et al. Conglomerates record the tectonic evolution of the Yarlung-Tsangpo suture zone in southern Tibet. Geol Soc London Spec Pub, 2004, 226: 235–246

    Article  Google Scholar 

  25. Zhang B G, Mu X N. Discovering of the marine Tetiary in the north of the Yarlung-Tsangpu (Xizang) (in Chinese). Acta Stratigr Sin, 1979, 3: 65–66

    Google Scholar 

  26. Liu C J, Yin J X, Sun X X, et al. Late Cretaceous-Early Tertiary marine sequences—The non-flysch deposits of the Xigaze forearc basin in South Xizang. In: Memoirs of Institute of Geology, Chinese Academy of Sciences (No. 3) (in Chinese). Beijing: Science Press, 1988. 130–157

    Google Scholar 

  27. Wan X Q, Sun L X, Liu W C, et al. Stratigraphy of the Yarlung-Tsangpu suture zone in Tibet (in Chinese). Beijing: Geological Publishing House, 2007. 1–119

    Google Scholar 

  28. Li J G, David J B, Zhang Y Y. Palynological indications of environmental changes during the Late Cretaceous-Eocene on the southern continental margin of Laurasia, Xizang (Tibet). Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 265: 78–86

    Article  Google Scholar 

  29. Yin J X, Sun X X, Sun Y Y, et al. Stratigraphy on the molasse-type sediments of the paired molasses belts in the Xigaze region, south Xizang. In: Memoirs of Institute of Geology, Chinese Academy of Sciences (No. 3) (in Chinese). Beijing: Science Press, 1988. 158–176

    Google Scholar 

  30. Miller C, Schuster R, Klötzli U, et al. Late Cretaceous-Tertiary magmatic and tectonic events in the Transhimalaya batholith (Kailas area, SW Tibet). Schweiz Mineral Petrogr Mitt, 2000, 80: 1–20

    Google Scholar 

  31. Chan A O K, Aitchison J C, Bandengzhu B, et al. Miocene collision-related conglomerates near Dazhuqu and Xigaze, Yarlung Tsangpo suture zone, Tibet. Himalayan J Sci, 2004, 2: 112

    Google Scholar 

  32. Li J G. Discovery and preliminary study on palynofossils from the Cenozoic Qiuwu Formation of Xizang (Tibet) (in Chinese with English abstract). Acta Micropalaeontol Sin, 2004, 21: 216–221

    Google Scholar 

  33. Ding L, Lai Q Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision. Chin Sci Bull, 2003, 48: 1604–1610

    Google Scholar 

  34. Li G B, Wan X Q, Liu W C, et al. Discovery of Paleogene marine stratum along the southern side of Yalung-Zangbo suture zone and its implications in tectonics. Sci China Ser D-Earth Sci, 2005, 48: 647–661

    Article  Google Scholar 

  35. Davis A M, Aitchison J C, Badengzhu B, et al. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sediment Geol, 2002, 150: 247–273

    Article  Google Scholar 

  36. Aitchison J C, Badengzhu B, Davis A M, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci Lett, 2000, 183: 231–244

    Article  Google Scholar 

  37. Aitchison J C, Davis A M, Badengzhu B, et al. New constraints on the India-Asia collision: The Lower Miocene Gangrinboche conglomerates, Yarlung Tsangpo suture zone, SE Tibet. J Asian Earth Sci, 2002, 21: 251–263

    Article  Google Scholar 

  38. Guo S X. The plant fossils in the Xigaze group of the Mount Everest region. In: Scientific Survey Report in Mount Everest Region (1966–1968). Paleontology (No. 1) (in Chinese). Beijing: Science Press, 1975. 411–423

    Google Scholar 

  39. Tao J R. The Paleogene flora and palaeoclimate of Liuqu formation in Xizang. In: Whyte P, et al., eds. The Paleoenvironment of East Asia from the mid-Tertiary. Occasional Papers and Monographs—Centre of Asian Studies 77. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1988. 520–522

    Google Scholar 

  40. Tao J R. Plant fossils from Liuqu Formation in Lhazi County, Xizang and their paleoclimatological significances. In: Memoirs of Institute of Geology, Chinese Academy of Sciences (No. 3) (in Chinese). Beijing: Science Press, 1988. 223–238

    Google Scholar 

  41. Fang A M, Yan Z, Liu X H, et al. The age of the plant fossil assemblage in the Liuqu Conglomerate of southern Tibet and its tectonic significance. Prog Nat Sci, 2006, 16: 55–64

    Article  Google Scholar 

  42. Fang A M, Yan Z, Liu X H, et al. The flora of the Liuqu Formation in south Tibet and its climatic implications (in Chinese with English abstract). Acta Palaeontol Sin, 2005, 44: 435–445

    Google Scholar 

  43. Wei L J, Liu X H, Yan F H, et al. Discovery and preliminary study on palynofossils from the Paleogene Liuqu Conglomerates in southern Xizang (Tibet) (in Chinese with English abstract). Acta Micropalaeontol Sin, 2009, 26: 249–260

    Google Scholar 

  44. Zhu H C, OuYang S. Spores and pollen vs plant megafossils: discrepancy of geological records and their palaeobotanical significance (in Chinese with English abstract). Acta Palaeontol Sin, 2005, 44: 161–174

    Google Scholar 

  45. Song Z C, Zhu Z H, Wu L Y, et al. A research on Tertiary palynology from the Qaidam Basin, Qinghai Province (in Chinese). Beijing: Petroleum Industry Press, 1985. 1–297

    Google Scholar 

  46. Zhang Y Y. Discovery of some forerunner species of Momipites from lower Tertiary of China (in Chinese with English abstract). Acta Palaeontol Sin, 1990, 29: 300–308

    Google Scholar 

  47. Zhang Y Y, Wang K D, Liu J L, et al. Eocene palynoflora from the southwestern continental shelf basin of the East China Sea (in Chinese with English abstract). Acta Micropalaeontol Sin, 1990, 7: 389–402

    Google Scholar 

  48. Guo X P, Wang N W, Ding X Z, et al. Discovery of Paleogene palynological assemblages from the Wanbaogou Group-complex in western part of the Eastern Kunlun orogenic belt and its geological significance. Sci China Ser D-Earth Sci, 2006, 49: 358–367

    Article  Google Scholar 

  49. Tiffney B H. Perspectives on the origin of the floristic similarity between eastern Asia and eastern America. J Arnold Arbor Harv, 1985, 66: 73–94

    Google Scholar 

  50. Song Z C, Zheng Y H, Liu J L, et al. Cretaceous-Tertiary sporopollen Assemblage in Jiangsu Province (in Chinese). Beijing: Geological Publishing House, 1981. 1–268

    Google Scholar 

  51. He Y M, Sun X J. Palynological investigation of paleogene in the Gingjiang Basin in Jiangxi Province (in Chinese with English abstract). Acta Bot Sin, 1977, 19: 72–82

    Google Scholar 

  52. Li M Y, Song Z C, Li Z P. Cretaceous-Tertiary sporo-pollen Assemblage in Jianghan Plain. In: Memoirs of Institute of Geology, Chinese Academy of Sciences (No. 9) (in Chinese). Beijing: Science Press, 1978. 1–60

    Google Scholar 

  53. Zhang Y Y. Tertiary sporo-pollen from Leizhou Peninsula (in Chinese with English abstract). Acta Palaeontol Sin, 1981, 20: 449–458

    Google Scholar 

  54. Yang R Y. Association and time of Tertiary sporo-pollen in Baise Basin, Guangxi (in Chinese with English abstract). Geol Guangxi, 1994, 7: 1–11

    Google Scholar 

  55. Song Z C, Li M Y, Zhong L. Cretaceous-Tertiary sporo-pollen Assemblage in Sanshui Basin, Guangdong (in Chinese). Beijing: Science Press, 1986. 1–170

    Google Scholar 

  56. Song Z C, Liu G W. Early Tertiary palynoflora and its significance of paleogeography from northern and eastern Xizang. In: Team of Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Academia Sinica, ed. Paleontology of Xizang, (No. 5) (in Chinese with English abstract). Beijing: Science Press, 1982. 165–190

    Google Scholar 

  57. Bowen G J. Palaeoclimate—When the world turned cold. Nature, 2007, 445: 607–608

    Article  Google Scholar 

  58. Lear C H, Bailey T R, Pearson P N, et al. Cooling and ice growth across the Eocene-Oligocene transition. Geology, 2008, 36: 251–254

    Article  Google Scholar 

  59. Katz M E, Miller K G, Wright J D, et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nat Geosci, 2008, 1: 329–334

    Article  Google Scholar 

  60. Zhang Y Y. Outline of Paleogene palynofloras of China (in Chinese with English abstract). Acta Palaeontol Sin, 1995, 34: 212–227

    Google Scholar 

  61. Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evedence from pollen analysis of the Xining Basin. Geology, 2008, 36: 987–990

    Article  Google Scholar 

  62. Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 2007, 445: 635–638

    Article  Google Scholar 

  63. William C E, Thomas E Y. Palynomorph biozones in the context of changing paleoclimate, Middle Eocene to Lower Oligocene of the Northwest Gulf of Mexico. Palynology, 2000, 24: 177–186

    Article  Google Scholar 

  64. Krutzsch W. Mikropalaeontogische (Sporenpalaontologische) Untersuchungen in der Braunkohle des Geiseltales. Geologie, 1959, 21–22: 1–425

    Google Scholar 

  65. Mathur Y K. Cenozoic palynofossils, vegetation, ecology and climate the North and Northwestern Subhimalayan Region, India. In: Whyte R O, ed. The Evolution of the East Asian Environment vol. 2. Hong Kong: Center of Asian Studies, University of Hong Kong, 1984. 504–512

    Google Scholar 

  66. Kiyoshi T. Palaeogene pollen assemblages and zonation of Japan. J Jap Palynol Soc, 1983, 29: 1–18

    Google Scholar 

  67. Sun X J, Wang P X. How old is the Asian monsoon system? —Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181–222

    Article  Google Scholar 

  68. Li G B, Wan X Q. Eocene microfossil in southern Tibet and the final closing of the Tibet-Tethys. J Stratigr, 2003, 27: 99–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiJie Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., Liu, X., Yan, F. et al. Palynological evidence sheds new light on the age of the Liuqu Conglomerates in Tibet and its geological significance. Sci. China Earth Sci. 54, 901–911 (2011). https://doi.org/10.1007/s11430-010-4149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4149-y

Keywords

Navigation