Skip to main content
Log in

Anatomical variations of living and fossil Liquidambar leaves: A proxy for paleoenvironmental reconstruction

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on living L. formosana, we have established that such epidermal cell properties as epidermal cell circumference (Circum.), undulation index (UI), epidermal cell area (EA) on both upper and lower epidermis and the corresponding epidermal cell density (ED), are suitable to differentiate between sun and shade leaves. Also, stomatal properties on the lower epidermis, including stomatal length (SL), stomatal pore length (PL) and the corresponding stomatal density (SD), are reliable parameters to identify sun/shade morphotypes. Then this anatomical approach was applied to 18 leaf remains of L. miosinica from the Miocene Xiannanshan Formation, Zhejiang Province (eastern China), and the fossil leaves were sorted into two groups, namely, sun and shade morphotypes. It indicates that anatomical differences between sun and shade leaves found in living species could be used for fossil leaves. Notably, the variation of UI between sun and shade morphotypes is larger on the upper epidermis as compared with the lower epidermis, showing that the UI on the upper epidermis is more sensitive to environmental changes. In addition, anatomical features are more variable in sun leaves than in shade leaves for both modern and fossil Liquidambar, suggesting sun leaves may be more sensitive to environmental changes. Sun leaves can then be a better indicator of paleoenvironmental change. Thus, stomatal parameters of sun morphotype should be adopted on reconstructing paleoenvironments using Liquidambar leaf remains. On the other hand, the three-lobed fossil L. miosinica leaf assemblage in the Xiananshan Formation is represented by an almost similar percentage of sun and shade morphotypes (56% and 44%, respectively), which is attributed to the short transport before deposition. As a result, identifying sun/shade morphotypes are very useful in reconstructing paleoenvironments based on fossil leaves of Liquidambar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McElwain J C, Chaloner W G. The fossil cuticle as a skeletal record of environmental change. Palaios, 1996, 11: 376–388

    Article  Google Scholar 

  2. Haworth M, McElwain J. Hot, dry, wet, cold or toxic? Revising the ecological significance of leaf and cuticular micromorphology. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 262: 79–90

    Article  Google Scholar 

  3. Van de Burgh J, Visscher H, Dilcher D L, et al. Paleoatmospheric signatures in Neogene fossil leaves. Science, 1993, 260: 1788–1790

    Article  Google Scholar 

  4. Kürschner W M, Van de Burgh J, Visscher H, et al. Oak leaves as biosensors of Late Neogene and Early Pleistocene paleoatmospheric CO2 concentration. Mar Micropaleontol, 1996, 27: 299–312

    Article  Google Scholar 

  5. Kürschner W M, Stulen I, Wagner F, et al. Comparison of palaeobotanical observations with experimental data on the leaf anatomy of Durmast oak (Quercus petraea (Fagaceae)) in response to environmental change. Ann Bot London, 1998, 81: 657–664

    Article  Google Scholar 

  6. Kürschner W M, Kvaček Z, Dilcher D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA, 2008, 105: 449–453

    Article  Google Scholar 

  7. Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palyno, 2001, 114: 1–28

    Article  Google Scholar 

  8. Royer D L, Wing S L, Beerling D J, et al. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science, 2001, 292: 2310–2313

    Article  Google Scholar 

  9. Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 2001, 411: 287–290

    Article  Google Scholar 

  10. Wagner F, Kouwenberg L L R, Van Hoof T B, et al. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quaternary Sci Rev, 2004, 23: 1947–1954

    Article  Google Scholar 

  11. Terashima I, Miyazawa S I, Hanba Y T. Why are sun leaves thicker than shade leaves?—Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res, 2001, 114: 93–105

    Article  Google Scholar 

  12. Lichtenthaler H K, Ač A, Marek M V, et al. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Bioch, 2007, 45: 577–588

    Article  Google Scholar 

  13. Sarijeva G, Knapp M, Lichtenthaler H K. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol, 2007, 164: 950–955

    Article  Google Scholar 

  14. Lockheart M J, Van Bergen, P F, Evershed R P. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: Implications for the study of higher land plant-derived sedimentary organic matter. Org Geochem, 1997, 26: 137–153

    Article  Google Scholar 

  15. Lockheart M J, Poole I, Van Bergen P F, et al. Leaf carbon isotope compositions and stomatal characters: Important considerations for palaeoclimate reconstructions. Org Geochem, 1998, 29: 1003–1008

    Article  Google Scholar 

  16. Schoenhut K, LePage B A, Vann D R. Identification of sun and shade leaves of Metasequoia occidentalis (Newberry) Chaney from the Middle Eocene of the Canadian High Arctic. In: Yang H, Hickey L J, eds. Metasequoia: Back from the Brink? An Update, Proceeding of the Second International Symposium on Metasequoia and Associated Plants. Bull Peabody Mus Nat History, 2007, 48: 301–315

  17. Nguyen Tu T T, Kürschner W M, Schouten S, et al. Leaf carbon isotope composition of fossil and extant oaks grown under differing atmospheric CO2 levels. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 212: 199–213

    Article  Google Scholar 

  18. Turney C S M, Hunt J E, Burrows C. Deriving a consistent δ 13C signature from tree canopy leaf material for palaeoclimatic reconstruction. New Phytol, 2002, 155: 301–311

    Article  Google Scholar 

  19. Sun B N, Dilcher D L, Beerling D J, et al. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proc Natl Acad Sci USA, 2003, 100: 7141–7146

    Article  Google Scholar 

  20. Osborn J M, Taylor T N. Morphological and ultrastructural studies of plant cuticular membranes. I. sun and shade leaves of Quercus velutina (Fagaceae). Bot Gaz, 1990, 151: 465–476

    Article  Google Scholar 

  21. Ashton P M S, Berlyn G P. A comparison of leaf physiology and anatomy of Quercus (Section Erythrobalanus-Fagaceae) species in different light environments. Am J Bot, 1994, 81: 589–597

    Article  Google Scholar 

  22. Kürschner W M. Leaf stomata as biosensor of palaeoatmospheric CO2 levels. Dissertation for Doctoral Degree. The Netherlands: Laboratory of Palaeobotany and Palynology, Utrecht University, 1996

    Google Scholar 

  23. Kürschner W M. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goepert)—Implications for their use as biosensors of palaeoatmospheric CO2 levels. Rev Palaeobot Palyno, 1997, 96: 1–30

    Article  Google Scholar 

  24. Poole I, Weyers J D B, Lawson T, et al. Variations in stomatal density and index: Implications for palaeoclimatic reconstructions. Plant Cell Environ, 1996, 19: 705–712

    Article  Google Scholar 

  25. Strauss-Debenedetti S, Berlyn G D. Leaf anatomical responses to light in five tropical Moraceae of different successional status. Am J Bot, 1994, 81: 1582–1591

    Article  Google Scholar 

  26. Barbacka M, Van Konijnenburg-van Cittert J H A. Sun and shade leaves in two Jurassic species of Pteridosperms. Rev Palaeobot Palyno, 1998, 103: 209–221

    Article  Google Scholar 

  27. Sullivan J H, Howells B W, Ruhland C T, et al. Changes in leaf expansion and epidermal screening effectiveness in Liquidambar styraciflua and Pinus taeda in response to UV-B radiation. Physiol Plantarum, 1996, 98: 349–357

    Article  Google Scholar 

  28. Herrick J D, Thomas R B. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Tree Physiol, 2003, 23: 109–118

    Google Scholar 

  29. Herrick J D, Maherali H, Thomas R B. Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol, 2004, 162: 387–396

    Article  Google Scholar 

  30. Hu H H, Chaney R W. A Miocene flora from Shantung Province, China. Carnegie Institution of Washington Publication (No. 507), 1940. 1–147

  31. Chaney R W, Axelrod. Miocene floras of the Columbia Plateau. Institution of Washington Publication (No. 617), 1959. 1–237

  32. Li H M, Guo S X. Angiospermae. In: Nanjing Inst Geol Min Res, eds. Paleontological Atlas of East China, Part 3, Volume of Mesozoic and Cenozoic (in Chinese). Beijing: Geological Publishing House, 1982. 294–316

    Google Scholar 

  33. Smiley C J, Rember W C. Composition of the Miocene Clarkia flora. In: Smiley C J, ed. Late Cenozoic History of the Pacific Northwest. San Francisco, California, USA: Pacific Division. Amer Assoc Adv Sci, 1985. 95–112

  34. Zhang Z Y, Lu A M. Hamamelidaceae: Geographic distribution, fossil history and origin (in Chinese). Acta Phytotaxon Sin, 1995, 33: 313–339

    Google Scholar 

  35. Meyer H W, Manchester S R. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. Los Angeles, USA: University of California Press, 1997. 1–195

    Google Scholar 

  36. Sun B. Fossil floras of Shanwang, China (in Chinese). Jinan: Shandong Science and Technology Press, 1999. 1–167

    Google Scholar 

  37. Li H M. Neogene floras from eastern Zhejiang, China. In: Whyte R O, ed. The Evolution of the East Asian Environment. Vol. II. Palaeobotany, Palaeozoology and Palaeoanthropology. Hong Kong: University of Hong Kong Press, 1984. 461–466

    Google Scholar 

  38. Liu Y S, Zetter R, Ferguson D K. Fossil pollen grains of Cathaya (Pinaceae) in the Miocene of eastern China. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 1997, 58: 227–235

    Google Scholar 

  39. Wang K F, Jiang H, Zheng Z, et al. Spore-pollen and diatom assemblages from the sediments embedded in basalts in Tiantai, Xinchang and Shengxian, Zhejiang, China (in Chinese). J Stratigr, 1985, 9: 28–34

    Google Scholar 

  40. Ho K S, Chen J C, Lo Ch H, et al. 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujiang region, SE China: Eruption ages, magma evolution and petrogenesis. Chem Geol, 2003, 197: 287–318

    Article  Google Scholar 

  41. Liu Y S, Zetter R, Ferguson D K, et al. Discriminating fossil evergreen and deciduous Quercus pollen: A case study from the Miocene of eastern China. Rev Palaeobot Palyno, 2007, 145: 289–303

    Article  Google Scholar 

  42. Poole I, Kürschner W M. Stomatal density and index: The practice. In: Jones T P, ed. Fossil plant and spores: Modern techniques. Geol Soc London. 1999. 257–260

  43. Kerp H. The study of fossil gymnosperms by means of cuticular analysis. Palaios, 1990, 5: 548–569

    Article  Google Scholar 

  44. Dilcher D L. Approaches to the identification of angiosperm leaf remains. Bot Rev, 1974, 40: 1–157

    Article  Google Scholar 

  45. García-Amorena I, Wagner F, Van Hoof T B, et al. Stomatal responses in deciduous oaka from southern Europe to the anthropogenic atmospheric CO2 increase: Refining the stomatal-based CO2 proxy. Rev Palaeobot Palyno, 2006, 141: 303–312

    Article  Google Scholar 

  46. Writing Group of Cenozoic Plants from China. Fossil Plants of China, Part 3, Volume of Cenozoic Plants (in Chinese). Beijing: Science Press, 1978. 32–35

    Google Scholar 

  47. Leaf Architecture Working Group. Manual of Leaf Architecture—Morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Washington: Smithsonian Institution, 1999. 1–67

    Google Scholar 

  48. Ferguson D K. The Miocene flora of Kreuzau, western German, I. The leaf-remains. Amsterdam, Netherlands: North Holland Publishing, 1971. 1–297

    Google Scholar 

  49. Smiley C J, Gray J, Huggins L M. Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho. With a section on fossil insecta by W F Barr and J M Gillespie. J Paleontol, 1975, 49: 833–844

    Google Scholar 

  50. Pan K Y, Lu A M, Wen J. Characters of leaf epidermis in Hamamelidaceae (S. L.) (in Chinese). Acta Phytotaxon Sin, 1990, 20: 10–26

    Google Scholar 

  51. Tanai T. On the Hamamelidaceae from the Palaeogene of Hokkaido, Japan. Trans Proc Palaeont Sco Japan, N. S., 1967, 66: 56–62

    Google Scholar 

  52. Tanai T. Revision of the Pliocene Mogi flora, described by Nathorst (1883) and Florin (1920). J Fac Sci Hokkaido Univ, Ser. 4, 1976, 17: 277–346

    Google Scholar 

  53. Smith R F. The leaf dimorphism of Liquidambar styraciflua L. Am Midl Nat, 1967, 77: 42v50

    Article  Google Scholar 

  54. McElwain J C. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology, 2004, 32: 1017–1020

    Article  Google Scholar 

  55. Kouwenberg L L R, Kürschner W M, McElwain J C. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry. Rev Mineral Geochem, 2007, 66: 215–241

    Article  Google Scholar 

  56. Wu J Y, Sun B N, Liu Y S, et al. A new species of Exbucklandia (Hamamelidaceae) from the Pliocene of China and its paleoclimatic significance. Rev Palaeobot Palyno, 2009, 155: 32–41

    Article  Google Scholar 

  57. Jones H G. Plants and Microclimate. Cambridge: Cambridge Univer-sity Press, 1992. 1–346

    Google Scholar 

  58. Guy J. Towards a physical based model of CO2-induced stomatal frequency response. New Phytol, 2003, 57: 391–398

    Google Scholar 

  59. Beerling D J. Stomatal density and index: Theory and application. In: Jones T P, Rowe N P, eds. Fossil Plants and Spores: Modern Techniques. Geol Soc London, 1999. 251–256

  60. Van Hoof T B, Kürschner W M, Wagner F, et al. Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase. Plant Ecol, 2006, 183: 237–243

    Article  Google Scholar 

  61. Pulliam W M. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol Monogr, 1993, 63: 29–53

    Article  Google Scholar 

  62. Van der Merwe N J, Medina E. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochim Cosmochim Ac, 1989, 53: 1091–1094

    Article  Google Scholar 

  63. Li M T, Sun B N, Xiao L, et al. Discovery of Betula mioluminifera Hu et Chaney from the Miocene in Eastern Zhejiang and reconstruction of palaeoclimate (in Chinese). Adv Earth Sci, 2008, 23: 651–658

    Google Scholar 

  64. Sun B N, Cong P Y, Yan D F, et al. Cuticular structure of two angiosperm fossils in Neogene from Tengchong, Yunnan Province and its palaeoenvironmental significance (in Chinese). Acta Palaeontol Sin, 2003, 42: 216–222

    Google Scholar 

  65. Bakker J C. Effects of humidity on stomatal density and its relation to leaf conductance. Sci Hortic, 1991, 48: 205–212

    Article  Google Scholar 

  66. He J S, Chen W L, Wang X L. Morphological and anatomical features of Quercus section suber and its adaptation to the ecological environment (in Chinese). Acta Phytoecol Sin, 1994, 18: 219–227

    Google Scholar 

  67. Ferguson D. The origin of leaf-assemblages, new light on an old problem. Rev Palaeobot Palyno, 1985, 46: 117–188

    Article  Google Scholar 

  68. Spicer R A. Plant taphonomic processes. In: Allison P A, Briggs D E G, eds. Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, NY, USA, 1991. 71–113

    Google Scholar 

  69. Roth J L, Dilcher D L. Some considerations in leaf size and leaf margin analysis of fossil leaves. Cour Forschungsinst Senckenberg, 1978, 30: 165–171

    Google Scholar 

  70. Uemura K. Late Neogene Liquidambar (Hamamelidaceae) from the southern part of northeast Honshu, Japan. Mem Natn Sci Mus Tokyo, 1983, 16: 25–36

    Google Scholar 

  71. Kürschner W M. Carbon isotope composition of fossil leaves-Revealing ecophysiological responses to past environmental change. New Phytol, 2002, 155: 197–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaiNian Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Sun, B., Li, X. et al. Anatomical variations of living and fossil Liquidambar leaves: A proxy for paleoenvironmental reconstruction. Sci. China Earth Sci. 54, 493–508 (2011). https://doi.org/10.1007/s11430-010-4135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4135-4

Keywords

Navigation