Skip to main content
Log in

Ridge subduction and porphyry copper-gold mineralization: An overview

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Many large porphyry Cu-Au deposits are connected to adakitic rocks known to be closely associated with ridge subduction. For example, there are several subducting ridges along the east Pacific margin, e.g., in Chile, Peru, and South America, most of which are associated with large porphyry Cu-Au deposits. In contrast, there are much fewer ridge subductions on the west Pacific margin and porphyry Cu-Au deposits are much less there, both in terms of tonnage and the number of deposits. Given that Cu and Au are moderately incompatible elements, oceanic crust has much higher Cu-Au concentrations than the mantle and the continental crust, and thus slab melts with their diagnostic adakitic chemistry have systematically higher Cu and Au, which is favorable for mineralization. Considering the geotherm of subducting slabs in the Phanerozoic, ridge subduction is the most favorable tectonic setting for this. Therefore, slab melting is the likely link in the spatial association between ridge subduction and Cu-Au deposits. Geochemical signatures of slab melting and hence maybe ridge subduction in less eroded regions in eastern China, the central Asian orogenic belt etc. may indicate important exploration targets for large porphyry Cu-Au deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian J Earth Sci, 1997, 44: 373–388

    Article  Google Scholar 

  2. Cooke D R, Hollings P, Walsh J L. Giant porphyry deposits: Characteristics, distribution, tectonic controls. Econ Geol, 2005, 100: 801–818

    Article  Google Scholar 

  3. Mutschler F E, Ludington S, Bookstrom A A. Giant porphyry-related metal camps of the world-A database. Open-File Report 99-556. U.S. Geological Survey, 2000. http://geopubs.wr.usgs.gov/open-file/of 99-556

  4. Reich M, Parada M A, Palacios C, et al. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: Metallogenic implications. Mineral Depos, 2003, 38: 876–885

    Article  Google Scholar 

  5. Oyarzun R, Marquez A, Lillo J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineral Depos, 2001, 36: 794–798

    Article  Google Scholar 

  6. Oyarzun R, Marquez A, Lillo J, et al. Reply to discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun R, Marquez A, Lillo J, Lopez I, Rivera S (Mineralium Deposita 36: 794–798, 2001). Mineral Depos, 2002, 37: 795–799

    Article  Google Scholar 

  7. Sajona F G, Maury R C. Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l’Academie des Sci-Ser IIA-Earth Planet Sci, 1998, 326: 27–34

    Google Scholar 

  8. Thieblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits: The adakite connection. Comptes Rendus De L Academie Des Sci Ser Ii Fascicule A-Sciences De La Terre Et Des Planetes, 1997, 325: 103–109

    Google Scholar 

  9. Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 2007, 35: 179–182

    Article  Google Scholar 

  10. Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, 1997, 6: 121–142

    Article  Google Scholar 

  11. Hou Z Q, Pan X F, Yang Z M, et al. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings (in Chinese with English abstract). Geoscience, 2007, 21: 332–351

    Google Scholar 

  12. Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J Petrol, 2006, 47: 119–144

    Article  Google Scholar 

  13. Xie J C, Yang X Y, Sun W D, et al. Geochronological and geochemical constraints on formation of the Tongling metal deposits, middle Yangtze metallogenic belt, east-central China. Int Geol Rev, 2009, 51: 388–421

    Article  Google Scholar 

  14. Sun W D, Xie Z, Chen J F, et al. Os-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze River, China. Econ Geol Bull Soc Econ Geol, 2003, 98: 175–180

    Google Scholar 

  15. Chang Y F, Liu X P, Wu Y C. The Copper-iron Belt of the Lower and Middle Reaches of the Changjiang River (in Chinese with English abstract). Beijing: Geological Publishing House, 1991. 379

    Google Scholar 

  16. Pan Y M, Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geol Rev, 1999, 15: 177–242

    Article  Google Scholar 

  17. Mao J W, Wang Y T, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geol Rev, 2006, 29: 307–324

    Article  Google Scholar 

  18. Thorkelson D J. Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 1996, 255: 47–63

    Article  Google Scholar 

  19. Palmer H. East Pacific Rise and westward drift of North America. Nature, 1968, 220: 341–345

    Article  Google Scholar 

  20. Espurt N, Funiciello F, Martinod J, et al. Flat subduction dynamics and deformation of the South American Plate: Insights from analog modeling. Tectonics, 2008, 27, doi: 10.1029/2007tc002175

  21. Delong S E, Schwarz W M, Anderson R N. Thermal effects of ridge subduction. Earth Planet Sci Lett, 1979, 44: 239–246

    Article  Google Scholar 

  22. Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics, 2009, 464: 118–136

    Article  Google Scholar 

  23. Wallace L M, Ellis S, Miyao K, et al. Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision. Geology, 2009, 37: 143–146

    Article  Google Scholar 

  24. Imai A. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs. Resour Geol, 2004, 54: 357–372

    Article  Google Scholar 

  25. Kim S W, Oh C W, Choi S G, et al. Ridge subduction-related Jurassic plutonism in and around the Okcheon metamorphic belt, South Korea, and implications for Northeast Asian tectonics. Int Geol Rev, 2005, 47: 248–269

    Article  Google Scholar 

  26. Kinoshita O. Migration of igneous activities related to ridge subduction in southwest Japan and the East-Asian continental-margin from the Mesozoic to the Paleogene. Tectonophysics, 1995, 245: 25–35

    Article  Google Scholar 

  27. Ling M X, Wang F Y, Ding X, et al. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Econ Geol, 2009, 104: 303–321

    Article  Google Scholar 

  28. Haeussler P J, Bradley D, Goldfarb R, et al. Link between ridge subduction and gold mineralization in Southern Alaska. Geology, 1995, 23: 995–998

    Article  Google Scholar 

  29. Goldfarb R J, Phillips G N, Nokleberg W J. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geol Rev, 1998, 13: 185–218

    Article  Google Scholar 

  30. Bourgois J, Martin H, Lagabrielle Y, et al. Subduction erosion related to spreading-ridge subduction: Taitao peninsula (Chile margin triple junction area). Geology, 1996, 24: 723–726

    Article  Google Scholar 

  31. Karsten J L, Klein E M, Sherman S B. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: Implications of modern ridge subduction systems for the Archean. Lithos, 1996, 37: 143–161

    Article  Google Scholar 

  32. Iwamori H. Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts. Earth Planet Sci Lett, 2000, 181: 131–144

    Article  Google Scholar 

  33. Benoit M, Aguillon-Robles A, Calmus T, et al. Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: Implication of mantle and crustal sources during the opening of an asthenospheric window. J Geol, 2002, 110: 627–648

    Article  Google Scholar 

  34. Groome W G, Thorkelson D J. The three-dimensional thermomechanical signature of ridge subduction and slab window migration. Tectonophysics, 2009, 464: 70–83

    Article  Google Scholar 

  35. Singer D A, Berger V I, Moring B C. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models. Open-File Report, 2008-1155, 2008

  36. Hollings P, Cooke D, Clark A. Regional geochemistry of tertiary igneous rocks in central Chile: Implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Econ Geol, 2005, 100: 887–904

    Article  Google Scholar 

  37. Patricio C C, Gonzalo R S. Oxide mineralization at the Radomiro Tomic Porphyry Copper Deposit, Northern Chile. Econ Geol, 2001, 96: 387–400

    Article  Google Scholar 

  38. Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol Bull Soc Econ Geol, 1998, 93: 373–404

    Google Scholar 

  39. Cooke D R, Bloom M S. Epithermal and subjacent porphyry mineralization, Acupan, Baguio District, Philippines-A fluid-inclusion and paragenetic study. J Geochem Explor, 1990, 35: 297–340

    Article  Google Scholar 

  40. Yang T F, Lee T, Chen C H, et al. A double island arc between Taiwan and Luzon: Consequence of ridge subduction. Tectonophysics, 1996, 258: 85–101

    Article  Google Scholar 

  41. Wong J, Sun M, Xing G F, et al. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125-100 Ma and its tectonic significance for South China. Lithos, 2009, 112: 289–305

    Article  Google Scholar 

  42. Charoy B, Raimbault L. Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): The key role of fluorine. J Petrol, 1994, 35: 919–962

    Google Scholar 

  43. Chen J F, Foland K A, Liu Y M. Precise 40Ar/39Ar dating of the Suzhou granite (in Chinese with English abstract). Acta Petrol Sin, 1993, 9: 77–85

    Google Scholar 

  44. Zheng Y F, Fu B, Gong B. The thermal history of the Huangmeijian intrusion in Anhui and its relation to mineralization: Isotopic evidence (in Chinese with English abstract). Acta Geol Sin, 1995, 69: 337–348

    Google Scholar 

  45. Zhang Q, Wang Y, Wang Y L. Preliminary study on the components of the lower crust in east China Plateau during Yanshanian Period: Constraints on Sr and Nd isotopic compositions of adakite-like rocks. Acta Petrol Sin, 2001, 17: 505–513

    Google Scholar 

  46. Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 2006, 89: 424–446

    Article  Google Scholar 

  47. Wang Q, Zhao Z H, Bao Z W, et al. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resour Geol, 2004, 54: 137–152

    Article  Google Scholar 

  48. Wang Y L, Zhang Q, Wang Y. Geochemical characteristics of volcanic rocks from Ningwu area, and its significance. Acta Petrol Sin, 2001, 17: 565–575

    Google Scholar 

  49. Huang F, Li S G, Dong F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chem Geol, 2008, 255: 1–13

    Article  Google Scholar 

  50. Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111–1114

    Article  Google Scholar 

  51. Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci, 2006, 27: 454–464

    Article  Google Scholar 

  52. Xia B, Chen G W, Wang H. Analysis of tectonic settings of global superlarge porphyry copper deposits. Sci China Ser D-Earth Sci, 2003, 46: 110–122

    Google Scholar 

  53. Sun W D, Arculus R J, Bennett V C, et al. Evidence for rhenium enrichment in the mantle wedge from submarine arc volcanic glasses (Papua New Guinea). Geology, 2003, 31: 845–848

    Article  Google Scholar 

  54. Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 2004, 431: 975–978

    Article  Google Scholar 

  55. McDonough W F, Sun S S. The composition of the Earth. Chem Geol, 1995, 120: 223–253

    Article  Google Scholar 

  56. Rudnick R L, Gao S. Composition of the continental crust. In: Heinrich D H, Turekian K K, eds. Treatise on Geochemistry. Oxford: Pergamon, 2003. 1–64

    Google Scholar 

  57. Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 2007, 262: 533–542

    Article  Google Scholar 

  58. Kay R W, Sun S S, Leehu C N. Pb and Sr isotopes in volcanic-rocks from Aleutian Islands and Pribilof Islands, Alaska. Geochim Cosmochim Acta, 1978, 42: 263–273

    Article  Google Scholar 

  59. Kay R W. Aleutian magnesian andesite: Melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res, 1978, 4: 117–132

    Article  Google Scholar 

  60. Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662–665

    Article  Google Scholar 

  61. Morozumi H. Geochemical characteristics of granitoids of the Erdenet porphyry copper deposit, Mongolia. Res Geol, 2003, 53: 311–316

    Article  Google Scholar 

  62. Kay S M, Mpodozis C. Setting and origin of miocene giant ore deposits in the central Andes. Pacrim’99: Proceedings of International Congress on Earth Science, Exploration and Mining Around the Pacific Rim, 1999. 5–12

  63. Kay S M, Podozis C. Magmatism as a probe to the Neogene shallowing of the Nazca Plate beneath the modern Chilean flat-slab. J South Amer Earth Sci, 2002, 15: 39–57

    Article  Google Scholar 

  64. Wang Q, Wyman D A, Xu J F, et al. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization. J Geol, 2007, 115: 149–161

    Article  Google Scholar 

  65. Hou Z Q, Gao Y F, Meng X L, et al. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrol Sin, 2004, 20: 239–248

    Google Scholar 

  66. Hou Z Q, Xie Y L, Xu W Y, et al. Yulong deposit, eastern Tibet: A high-sulfidation Cu-Au porphyry copper deposit in the eastern Indo-Asian collision zone. Int Geol Rev, 2007, 49: 235–258

    Article  Google Scholar 

  67. Zhang Q, Qin K Z, Wang Y L, et al. Study on adakite broadened to challenge the Cu and Au exploration in China (in Chinese with English abstract). Acta Petrol Sin, 2004, 20: 195–204

    Google Scholar 

  68. Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 2002, 30: 915–918

    Article  Google Scholar 

  69. Imai A. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K-Ar ages, SO3 contents of micropheno-crystic apatite and significance of intrusive rocks. Res Geol, 2002, 52: 147–161

    Article  Google Scholar 

  70. Liang H Y, Sun W D, Su W C, et al. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol, 2009, 104: 587–596

    Article  Google Scholar 

  71. Liang H Y, Campbell I H, Allen C, et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineral Depos, 2006, 41: 152–159

    Article  Google Scholar 

  72. Parkinson I J, Arculus R J. The redox state of subduction zones: Insights from arc-peridotites. Chem Geol, 1999, 160: 409–423

    Article  Google Scholar 

  73. Brandon A D, Draper D S. Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochim Cosmochim Acta, 1996, 60: 1739–1749

    Article  Google Scholar 

  74. Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions. Earth Planet Sci Lett, 2004, 222: 101–114

    Article  Google Scholar 

  75. Sun X M, Tang Q, Sun W D, et al. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochim Cosmochim Acta, 2007, 71: 2896–2905

    Article  Google Scholar 

  76. Sun W, Bennett V C, Eggins S M, et al. Rhenium systematics in submarine MORB and back-arc basin glasses: Laser ablation ICP-MS results. Chem Geol, 2003, 196: 259–281

    Article  Google Scholar 

  77. Hofmann A W. Chemcial differentiation of the Earth: The relationship between mantle, oceanic crust and continental crust. Earth Planet Sci Lett, 1988, 90: 297–314

    Article  Google Scholar 

  78. Ling M X, Sun W D, Chung S L, et al. The association of adakite with Cu (Au) deposits. Geochim Cosmochim Acta, 2009, 73: A59

    Google Scholar 

  79. Sun W D, Ling M X, Ding X, et al. On the association between adakites and Cu-Au ore deposits. Mineral Depos, 2010, in review

  80. McDonough W F. Partial melting of subducted oceanic-crust and isolation of its residual eclogitic lithology. Phil Trans Royal Soc London Ser A-Math Phys Eng Sci, 1991, 335: 407–418

    Article  Google Scholar 

  81. Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 2002, 417: 837–840

    Article  Google Scholar 

  82. Xiao Y L, Sun W D, Hoefs J, et al. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim Cosmochim Acta, 2006, 70: 4770–4782

    Article  Google Scholar 

  83. Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425: 605–609

    Article  Google Scholar 

  84. Peacock S M. Fluid processes in subduction zones. Science, 1990, 248: 329–337

    Article  Google Scholar 

  85. Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet Sci Lett, 1994, 121: 227–244

    Article  Google Scholar 

  86. Rabbia O M, Hernandez L B, King R W, et al. Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun et al. (Mineralium Deposita 36: 794–798, 2001). Mineral Depos, 2002, 37: 791–794

    Article  Google Scholar 

  87. Richards J P. Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun et al. (Mineralium Deposita 36: 794–798, 2001). Mineral Depos, 2002, 37: 788–790

    Article  Google Scholar 

  88. Richards J P, Kerrich R. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ Geol, 2007, 102: 537–576

    Article  Google Scholar 

  89. Castillo P R. An overview of adakite petrogenesis. Chin Sci Bull, 2006, 51: 258–268

    Article  Google Scholar 

  90. Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 2006, 243: 581–593

    Article  Google Scholar 

  91. Rodriguez C, Selles D, Dungan M, et al. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longav volcano (36.2°S; Andean Southern Volcanic Zone, central Chile). J Petrol, 2007, 48: 2033–2061

    Article  Google Scholar 

  92. Chiaradia M, Fontbote L, Beate B. Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineral Depos, 2004, 39: 204–222

    Article  Google Scholar 

  93. Aguillon-Robles A, Calmus T, Benoit M, et al. Late miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below Southern Baja California? Geology, 2001, 29: 531–534

    Article  Google Scholar 

  94. Viruete J E, Contreras F, Stein G, et al. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: Record of a major change in the Caribbean island arc magma sources. Lithos, 2007, 99: 151–177

    Article  Google Scholar 

  95. Bourgois J, Michaud F. Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12-10 Myr. Earth Planet Sci Lett, 2002, 201: 35–44

    Article  Google Scholar 

  96. Breitsprecher K, Thorkelson D J, Groome W G, et al. Geochemical confirmation of the Kula-Farallon slab window beneath the Pacific Northwest in Eocene time. Geology, 2003, 31: 351–354

    Article  Google Scholar 

  97. Guillaume B, Martinod J, Husson L, et al. Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction? Tectonics, 2009, 28, doi: 10.1029/2008tc002324

  98. Niu H, Sato H, Zhang H, et al. Juxtaposition of adakite, boninite, high-TiO2 and low-TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China. J Asian Earth Sci, 2006, 28: 439–456

    Article  Google Scholar 

  99. Tang G J, Wang Q, Zhao Z H, et al. Geochronology and geochemistry of the Ore-bearing porphyries in the Baogutu area (Western Junggar): Petrogenesis and their implications for Tectonics and Cu-Au Mineralization (in Chinese with English abstract). Earth Sci-J China Univ Geosci, 2009, 34: 56–74

    Article  Google Scholar 

  100. Niu H C, Yu X Y. Geochronology of the Fuyun adakite, north Xin-jiang and its constraint to the initiation of the Paleo-Asian Ocean subduction. Acta Petrol Sin, 2008, 24: 1054–1058

    Google Scholar 

  101. Wang Q, Zhao Z H, Xu J F, et al. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the Northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization (in Chinese with English abstract). Acta Petrol Sin, 2006, 22: 11–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiDong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Ling, M., Yang, X. et al. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci. China Earth Sci. 53, 475–484 (2010). https://doi.org/10.1007/s11430-010-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-0024-0

Keywords

Navigation