Skip to main content
Log in

Latest progress on interactions between VLF/ELF waves and energetic electrons in the inner magnetosphere

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF waves, along with the variability of the electron radiation belts associated with wave-particle interactions and radial diffusion. We provide cases of electron loss and acceleration as a result of wave-particle interactions primarily due to such waves, and particularly some preliminary results of 3D evolution of phase space density from our currently developing 3D code. We comment on the existing mechanisms responsible for acceleration and loss, and identify several critical issues that need to be addressed. We review latest progress and suggest open questions for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green J C, Kivelson M G. Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms. J Geophys Res, 2004, 109: A03213

    Article  Google Scholar 

  2. Iles R H A, Meredith N P, Fazakerley A N, et al. Phase space density analysis of the outer radiation belt energetic electron dynamics. J Geophys Res, 2006, 111: A03204

    Article  Google Scholar 

  3. Summers D, Thorne R M, Xiao F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res, 1998, 103: 20487–20500

    Article  Google Scholar 

  4. Horne R B, Thorne R M, Shprits Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts. Nature, 2005, 437: 227–230

    Article  Google Scholar 

  5. Chen Y, Reeves G D, Friedel R H W. The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Phys, 2007, 3: 614–617

    Article  Google Scholar 

  6. Li X, Baker D N, Temerin M, et al. Energetic electrons, 50 keV-6 MeV, at geosynchronous orbit: Their responses to solar wind variations. Space Weather, 2005, 3: S04001

    Article  Google Scholar 

  7. Sarris T, Li X, Temerin M. Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields. Ann Geophys, 2006, 24: 1–16

    Google Scholar 

  8. Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105

    Article  Google Scholar 

  9. Zong Q G, Wang Y F, Yang B, et al. Recent progress on ULF waves and its interactions with energetic particles in the inner magnetosphere. Sci China Ser E-Technol Sci, 2008, 51: 1–6

    Article  Google Scholar 

  10. Li X, Roth I, Temerin M, et al. Simulation of the prompt energization and transport of radiation particles during the March 23, 1991 SSC. Geophys Res Lett, 1993, 20: 2423–2426

    Article  Google Scholar 

  11. Li X, Baker, D N, Temerin M, et al. Are energetic electrons in the solar wind the source of the outer radiation belt? Geophys Res Lett, 1997, 24: 923–926

    Article  Google Scholar 

  12. Hudson M K, Elkington S R, Lyon J G, et al. Simulations of radiation belt formation during storm sudden commencements. J Geophys Res, 1997, 102: 14087–14102

    Article  Google Scholar 

  13. Kress B T, Hudson M K, Looper M D, et al. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. J Geophys Res, 2007, 112: A09215

    Article  Google Scholar 

  14. Hudson M K, Brian T K, Mueller H R, et al. Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Solar Terr Phys, 2008, 70: 708–729

    Article  Google Scholar 

  15. Selesnick R S, Blake J B, Mewaldt R A. Atmospheric losses of radiation belt electrons. J Geophys Res, 2003, 108: 1468

    Article  Google Scholar 

  16. Abel B, Thorne R M. Electron scattering loss in Earth’s inner magnetosphere 1. Dominant physical processes. J Geophys Res, 1998, 103: 2385–2396

    Article  Google Scholar 

  17. Burtis W J, Helliwell R A. Magnetospheric chorus: Occurrence patterns and normalized frequency. Planet Space Sci, 1976, 24: 1007

    Article  Google Scholar 

  18. Santolik O, Macusova E, Yearby K H, et al. Radial variation of whistler-mode chorus: First results from the STAFF/DWP instrument on board the Double Star TC-1 spacecraft. Ann Geophys, 2005, 23: 2937

    Article  Google Scholar 

  19. Meredith N P, Horne R B, Thorne R M, et al. Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys Res Lett, 2003, 30: 1871–1874

    Article  Google Scholar 

  20. Parrot M, Gaye C A. A statistical survey of ELF waves in a geostationary orbit. Geophys Res Lett, 1994, 21: 2463–2466

    Article  Google Scholar 

  21. Meredith N P, Horne R B, Thorne R M, et al. Substorm dependence of plasmaspheric hiss. J Geophys Res, 2005, 109: A06209

    Article  Google Scholar 

  22. Smith E J, Frandsen A M A, Tsurutani B T, et al. Plasmaspheric hiss intensity variations during magnetic storms. J Geophys Res, 1974, 79: 2507–2510

    Article  Google Scholar 

  23. Thorne R M, Smith E J, Fiske K J, et al. Intensity variation of ELF hiss and chorus during isolated substorms. Geophys Res Lett, 1974, 1: 193–196

    Article  Google Scholar 

  24. Tsurutani B T, Smith E J, Thorne R M. Electromagnetic hiss and relativistic electron losses in the inner zone. J Geophys Res, 1975, 80: 600–610

    Article  Google Scholar 

  25. Jordanova V K, Farrugia C J, Thorne R M, et al. Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997 storm. J Geophys Res, 2001, 106: 7–16

    Article  Google Scholar 

  26. Summers D, Ni B, Meredith N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J Geophys Res, 2007, 112: A04207

    Article  Google Scholar 

  27. Fraser B J, Nguyen T S. Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J Atmos Sol Terr Phys, 2001, 63: 1225–1247

    Article  Google Scholar 

  28. Albert J M. Using quasi-linear diffusion to model acceleration and loss from wave-particle interactions. Space Weather, 2004, 2: S09S03

    Article  Google Scholar 

  29. Albert J M, Young S L. Multidimensional quasi-linear diffusion of radiation belt electrons. Geophys Res Lett, 2005, 32: L14110

    Article  Google Scholar 

  30. Tao X, Chan A A, Albert J M, et al. Stochastic modeling of multidimensional diffusion in the radiation belts. J Geophys Res, 2008, 113: A07212

    Article  Google Scholar 

  31. Tao X, Albert J M, Chan A A. Numerical modeling of multi-dimensional diffusion in the radiation belts using layer methods. J Geophys Res, 2009, 114: A02215

    Article  Google Scholar 

  32. Xiao F, Su Z, Zheng H, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A03201

    Article  Google Scholar 

  33. Li W, Shprits Y Y, Thorne R M. Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J Geophys Res, 2007, 112: A10220

    Article  Google Scholar 

  34. Xiao F, Zong Q G, Chen L. Pitch-angle distribution evolution of energetic electrons in the inner radiation belt and slot region during the 2003 Halloween storm. J Geophys Res, 2009, 114: A01215

    Article  Google Scholar 

  35. Schulz M, Lanzerotti L J. Particle diffusion in the radiation belts. Phys Chem Space, 1974, 7: 215

    Google Scholar 

  36. Shprits Y Y, Subbotin D A, Meredith N, et al. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. J Atmos Sol Terr Phys, 2008, 70: 1694–1713

    Article  Google Scholar 

  37. Miyoshi Y S, Jordanova V K, Morioka A, et al. Observations and modeling of energetic electron dynamics during the October 2001 storm. J Geophys Res, 2006, 111: A11S02

    Article  Google Scholar 

  38. Fok M C, Horne R B, Meredith N P, et al. Radiation belt environment model: Application to space weather nowcasting. J Geophys Res, 2008, 113: A03S08

    Article  Google Scholar 

  39. Beutier T, Boscher D. A three-dimensional analysis of the electron radiation belt by the Salammbo code. J Geophys Res, 1995, 100: 14853–14861

    Article  Google Scholar 

  40. Varotsou A, Boscher D, Bourdarie S, et al. Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves. Geophys Res Lett, 2005, 32: L19106

    Article  Google Scholar 

  41. Varotsou A, Boscher D, Bourdarie S, et al. Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res, 2008, 113: A12212

    Article  Google Scholar 

  42. Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 02009, 114: A10204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiuGang Zong.

Additional information

This work was supported by National Natural Science Foundation of China (Grant Nos. 40874076, 40774079, 40925014, 40774078, 40831061); Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806024), the Construct Program of the Key Discipline in Changsha University of Science and Technology, and the Specialized Research Fund for State Key Laboratories for Space Weather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, F., Zong, Q., Su, Z. et al. Latest progress on interactions between VLF/ELF waves and energetic electrons in the inner magnetosphere. Sci. China Earth Sci. 53, 317–326 (2010). https://doi.org/10.1007/s11430-010-0007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-0007-1

Keywords

Navigation