Skip to main content
Log in

Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, and petrogenesis of different stages of magmatism of the granitic rocks from the Gangdese batholith in southern Tibet. The magmatic activities of the Gangdese batholith can be divided into three stages. The Mesozoic magmatism, induced by northern subduction of Neotethyan slab, was continuously developed, with two peak periods of Late Jurassic and Early Cretaceous. The Paleocene-Eocene magmatism was the most intensive, and resulted from a complex progress of Neotethyan oceanic slab, including subduction, rollback, and subsequent breakoff. And the Oligocene-Miocene magmatism was attributed to the convective removal of thickened lithosphere in an east-west extension setting after India-Asia collision. Isotopically, zircons from these granitic rocks are characterized by positive ɛ Hf(t) values, suggesting that the magmatic source of the Gangdese batholith might be an arc terrane, which was accreted to the southern margin of Asia during Late Paleozoic. Therefore, the chronological framework and Hf isotopic characteristics of the Gangdese batholith are distinct from the granitic rocks in adjacent areas, which can be served as a powerful tracer in studying source-to-sink relation of sediments during the uplift and erosion of Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 1987, 98(6): 678–701

    Google Scholar 

  2. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 2000, 28: 211–280

    Google Scholar 

  3. Mo X X, Dong G C, Zhao Z D, et al. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution (in Chinese). Geol J China Univ, 2005, 11: 281–290

    Google Scholar 

  4. Pan G T, Mo X X, Hou Z Q, et al. Spatial-temporal framework of the Gangdese orogenic belt and its evolution (in Chinese). Acta Petrol Sin, 2006, 22(3): 521–533

    Google Scholar 

  5. Zhu D C, Pan G T, Wang L Q, et al. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdese belt, Tibet, China, with a discussion of geodynamic setting-related issues (in Chinese). Geol Bull China, 2008, 27: 1535–1550

    Google Scholar 

  6. Zhu D C, Pan G T, Mo X X, et al. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: New insights from volcanic rocks (in Chinese). Acta Petrol Sin, 2006, 22(3): 534–546

    Google Scholar 

  7. Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of Southern Tibet. Geology, 2006, 34(9): 745–748

    Google Scholar 

  8. Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol, 2008, 252: 191–201

    Google Scholar 

  9. Yang J S, Xu Z Q, Geng Q R, et al. A possible new HP/UHP (?) metamorphic belt in China: Discovery of eclogite in the Lhasa Terrane, Tibet (in Chinese). Acta Geol Sin, 2006, 80(12): 1787–1792

    Google Scholar 

  10. Yang J S, Xu Z Q, Li T F, et al. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the Paleo-Tethys ocean basin (in Chinese)? Geol Bull China, 2007, 26(10): 1277–1287

    Google Scholar 

  11. Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? J Asian Earth Sci, 2009, 34: 76–89

    Google Scholar 

  12. Wu F Y, Huang B C, Ye K, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau (in Chinese). Acta Petrol Sin, 2008, 24(1): 1–30

    Google Scholar 

  13. Debon F, Le Fort P, Sheppard S M, et al. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol, 1986, 27: 219–250

    Google Scholar 

  14. Harris N B W, Xu R H, Lewis C L, et al. Plutonic Rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond, 1988, A327(1594): 145–146

    Google Scholar 

  15. Geng Q R, Pan G T, Jin Z M, et al. Geochemistry and genesis of the Yeba volcanic rocks in the Gangdese magmatic arc, Tibet (in Chinese). Earth Sci, 2005, 30(6): 747–760

    Google Scholar 

  16. Geng Q R, Pan G T, Wang L Q, et al. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone, Xizang (in Chinese). Sediment Geol Tethyan Geol, 2006, 26: 1–7

    Google Scholar 

  17. Dong Y H, Xu J F, Zeng Q G, et al. Is there a Neo-Tethys’subduction record earlier than arc volcanic rocks in the Sangri Group (in Chinese)? Acta Petrol Sin, 2006, 22: 661–668

    Google Scholar 

  18. Zhu D C, Pan G T, Chung S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet. Inter Geol Rev, 2008, 50: 442–471

    Google Scholar 

  19. Li H P, Zhang M S. Lithogeochemical features of Sangri Group volcanic rocks in Sangri area, Tibet (in Chinese). Geol Tibet, 1995, (1): 84–92

  20. Yao P, Li J G, et al. Discovery and geological significance of the adakite in Gangdese island arc belt, Xizang (Tibet) (in Chinese). Acta Petrol Sin, 2006, 22(3): 612–620

    Google Scholar 

  21. Zhu D C, Zhao Z D, Pan G D, et al. Early Cretaceous subduction-related adakite-like rocks in the Gangdese belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? J Asian Earth Sci, 2009, 34: 298–309

    Google Scholar 

  22. Liu H F. Division of Linzizong volcanic rock system and belong to time in Lhasa area (in Chinese). Geol Tibet, 1993, (2): 15–24

  23. Mo X X, Zhao Z D, Deng J F, et al. Response of volcanism to the India-Asia collision (in Chinese). Earth Sci Front, 2003, 10(3): 135–148

    Google Scholar 

  24. Zhou S, Mo X X, Dong G C, et al. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications. Chin Sci Bull, 2004, 49(8): 1970–1979

    Google Scholar 

  25. Lee H Y, Chung S L, Wang Y B, et al. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: Evidence from zircon U-Pb dates and Hf isotopes (in Chinese). Acta Petrol Sin, 2007, 23(20): 493–500

    Google Scholar 

  26. Mo X X, Niu Y L, Dong G C, et al. Contribution of syn-collisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem Geol, 2008, 250: 49–67

    Google Scholar 

  27. Lee H Y, Chung S L, Lo C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 2009, doi: 10.1016/j.tecto.2009.02.031

  28. Einsele G, Liu B, Dürr S, et al. The Xigaze forearc basin: evolution and facies architecture (Cretaceous, Tibet). Sediment Geol, 1994, 90: 1–32

    Google Scholar 

  29. Dürr S B. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol Soc Am Bull, 1996, 108: 669–684

    Google Scholar 

  30. Chang C F, Zeng S L. Tectonic features of the Mount Jolmo Lungma regin in southern Tibet, China (in Chinese). Sci Geol Sin, 1973, (1): 1–12

  31. Chang C F, Cheng H L. Some tectonic features of the MT. Jolmo Lungma area, southern Tibet, China (in Chinese). Sci Sin, 1973, 16(2): 257–265

    Google Scholar 

  32. Jin C W, Zhou Y S. Igneous rock belts in the Himalayas and the grandes arc and their genetic model (in Chinese). Sci Geol Sin, 1978, 13(4): 297–312

    Google Scholar 

  33. Tu G Z, Zhang Y Q, Zhao Z H, et al. Characteristics and evolution of granitoids of south Xizang (Tibet) (in Chinese). Geochimica, 1981, 10(1): 1–7

    Google Scholar 

  34. Zhang Y Q, Dai T M, Hong A S. Isotopic geochronology of granitoid rocks in southern Xizang Plateau (in Chinese). Geochimica, 1981, 10(1): 8–18

    Google Scholar 

  35. Wang Z G, Zhang Y Q, Zhao H L. Petrochemical study of granitoid rocks in southern Xizang (in Chinese). Geochimica, 1981, 10(1): 19–25

    Google Scholar 

  36. Zhao Z H, Wang Y X, Qian Z X, et al. Ree geochemistriy of granitoids in southern Xizang (in Chinese). Geochimica, 1981, 10(1): 26–35

    Google Scholar 

  37. Wang Y X, Zhao Z H, Wang Z G. Some geochemical characteristics of trace elements in granitoid rocks in southern Xizang. Geochimica, 1981, 10(1): 49–56

    Google Scholar 

  38. Wang J W, Cheng Z L, Gui X T, et al. Rb-Sr isotopic studies of some intermediate-acidic plutons in southern Xizang (in Chinese). Geochimica, 1981, 10(3): 242–246

    Google Scholar 

  39. Gui X T, Cheng Z L, Wang J W. A study on Rb-Sr isotopes in the intermediate-acid rock bodies of the Gangdise rock belt, Lhasa, Xizang (in Chinese). Geochimica, 1982, 11(3): 217–225

    Google Scholar 

  40. Group of K-Ar Geochronology, Institute of Geology, Academia Sinica. K-Ar dating and division of the Himalayan movement in southern Xizang (in Chinese). Sci Geol Sin, 1979, (1): 13–21

  41. Liu R M, Zhao D H. A discussion on the isotopic ages of the intrusive rocks in eastern Xizang (Tibet), China (in Chinese). Geol Rev, 1981, 27(4): 326–332

    Google Scholar 

  42. Tapponnier P, Mercier J L, Armijo R, et al. Field evidence for active normal faulting in Tibet. Nature, 1981, 294: 410–414

    Google Scholar 

  43. Maluski H, Proust F, Xiao X C. 39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet. Nature, 1982, 298: 152–154

    Google Scholar 

  44. Allègre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 1984, 307: 17–22

    Google Scholar 

  45. Schärer U, Xu R H, Allègre C J. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaxe region, Tibet. Earth Planet Sci Lett, 1984, 69: 311–320

    Google Scholar 

  46. Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. J Geol, 1985, 93: 41–57

    Google Scholar 

  47. Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 2009, 262: 229–245

    Google Scholar 

  48. Harrison T M, Yin A, Grove M, et al. The Zetang Window: A record of superposed Tertiary convergence in southeastern Tibet. J Geophys Res, 2000, 105: 19211–19230

    Google Scholar 

  49. McDermid I R C, Aitchison J C, Davis A M, et al. The Zetang terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chem Geol, 2002, 187: 267–277

    Google Scholar 

  50. Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in Gangdise magmatic belt during the India-Asia collision: Zircon SHIRMP U-Pb dating (in Chinese). Acta Geol Sin, 2005, 79(1): 66–76

    Google Scholar 

  51. Dong G C, Mo X X, Zhao Z D, et al. Geochronologic constraints on the magmatic underplating of the Gangdese belt in the India-Eurasia collision: Evidence of SHRIMP II zircon U-Pb dating (in Chinese). Acta Geol Sin, 2005, 79(6): 787–794

    Google Scholar 

  52. Xia B, Wei Z Q, Zhang Y Q, et al. SHRIMP U-Pb zircon dating of granodiorite in the Kangrinboqe pluton in western Tibet, China and its geological implications (in Chinese). Geol Bull China, 2007, 26: 1014–1017

    Google Scholar 

  53. Xia B, Xu L F, Zhang Y Q, et al. SHRIMP zircon U-Pb dating of granodiorites from Xietongmen pluton, Tibet and its geological implication (in Chinese). Geotectonica et Metallogenia, 2008, 32(2): 238–242

    Google Scholar 

  54. Zhang G Y, Zheng Y Y, Gong F Z, et al. Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit, Tibet, associated with continent-continent collisional process (in Chinese). Acta Petrol Sin, 2008, 24(3): 473–479

    Google Scholar 

  55. Harris N B W, Xu R H, Lewis C L, et al. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond, 1988, A327(1594): 263–285

    Google Scholar 

  56. Jiang W, Mo X X, Zhao C H, et al. Geochemistry of granitoid and its mafic microgranular enclave in Gangdese belt, Qinghai-Xizang plateau (in Chinese). Acta Petrol Sin, 1999, 15(1): 89–97

    Google Scholar 

  57. Xu R H. Geochronology and isotopic studies of granitoids and metamorphic rocks. In: Liu G H, Jin C W, Wang F B, et al. Metamorphic and Igneous Rocks in Xizang (Tibet). Geological Memoirs Series 3 — Tectonic Evolution of the Lithosphere of the Himalayas (in Chinese). Beijing: Geological Publishing House, 1990. 287–321

    Google Scholar 

  58. Huang H Z, Wang S C, Huang L Q, et al. Yadong-Golmud GGT — Magmatism and Evolution of the Lithosphere in Qinghai-Xizang (Tibet) Plateau (in Chinese). Beijing: Geological Publishing House, 1993. 100

    Google Scholar 

  59. Liu Z S, Wang J M. Geology and Geochemistry of Granites in Southern Tibetan Plateau (in Chinese). Chengdu: Sichuan Science and Technology Press, 1994. 133

    Google Scholar 

  60. Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev, 2005, 68: 173–196

    Google Scholar 

  61. Dong G C, Mo X X, Zhao Z D, et al. Gabbros from southern Gangdese: Implication for mass exchange between mantle and crust (in Chinese). Acta Petrol Sin, 2008, 24(2): 203–210

    Google Scholar 

  62. Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 2003, 31(11): 1021–1024

    Google Scholar 

  63. Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 2004, 220: 139–155

    Google Scholar 

  64. Rui Z Y, Li G M, Zhang L S, et al. The response of porphyry copper deposits to important geological events in Xizang (in Chinese). Earth Sci Front, 2004, 11(1): 145–152

    Google Scholar 

  65. Hou Z Q, Qu X M, Yang Z S, et al. Metallogenesis in Tibetan collisional orogenic belt: III. Mineralization in post-collisional extension setting (in Chinese). Min Dep, 2006, 25(6): 629–651

    Google Scholar 

  66. Quidelleur X, Grove M, Lovera O M, et al. Thermal evolution and slip history of the Renbu Zetang Thrust, southeastern Tibet. J Geophys Res, 1997, 102(B2): 2659–2679

    Google Scholar 

  67. Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 2008, 105: 1–11

    Google Scholar 

  68. Lin W, Zhang Y Q, Liang H Y, et al. Petrochemistry and SHRIMP U-Pb zircon age of the Chongjiang ore-bearing porphyry in the Gangdese porphyry copper belt (in Chinese). Geochimica, 2004, 33(6): 585–592

    Google Scholar 

  69. Wang L L, Mo X X, Li B, et al. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet (in Chinese). Acta Petrol Sin, 2006, 22(4): 1001–1008

    Google Scholar 

  70. Mo J H, Liang H Y, Yu H X, et al. Comparison of ELA-ICP-MS and SRIMP U-Pb zircon ages of the Chongjiang and Qulong ore-bearing porphyries in the Gangdese porphyry copper belt (in Chinese). Geotectonica et Metallogenia, 2006, 30(4): 504–509

    Google Scholar 

  71. Zhang H F, Xu W C, Guo K Q, et al. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab (in Chinese). Acta Petrol Sin, 2007, 23: 1347–1353

    Google Scholar 

  72. Qu X M, Xin H B, Xu W Y. Collation of age of ore-hosting volcanic in Xiongcun superlarge Cu-Au deposit on basis of three zircon U-Pb SHRIMP ages (in Chinese). Mineral Deposits, 2007, 26(5): 512–518

    Google Scholar 

  73. Yang Z M, Hou Z Q, Xia D X, et al. Relationship between western porphyry and mineralization in Qulong copper deposit if Tibet and its enlightenment to further exploration (in Chinese). Mineral Deposits, 2008, 27(1): 28–36

    Google Scholar 

  74. Irvine T N and Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Canad J Earth Sci, 1971, 8: 523–548

    Google Scholar 

  75. Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 1989, 22: 247–263

    Google Scholar 

  76. Gao Y F, Hou Z Q, Kamber B S, et al. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib Mineral Petrol, 2007, 153: 105–120

    Google Scholar 

  77. Guo Z F, Wilson M, Liu J Q, et al. Post-collisional, adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos, 2007, 96: 205–224

    Google Scholar 

  78. Dong G C, Mo X X, Zhao Z D, et al. Magma mixing in middle part of Gangdise magma belt: Evidences from granitoid complex (in Chinese). Acta Petrol Sin, 2006, 22(4): 835–844

    Google Scholar 

  79. Chappell B W, White A J R. Two contrasting granite types. Pacific Geol, 1974, 8: 173–174

    Google Scholar 

  80. Boynton W V. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elservier, 1984. 63–114

    Google Scholar 

  81. Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, eds. Magmatism in Ocean Basins. Geol Soc Publ, 1989, 313–345

  82. Kay R W, Kay S M. Andean adakites: Three ways to make them. Acta Petrol Sin, 2002, 18(3): 303–311

    Google Scholar 

  83. Mantle G W, Collins W J. Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology, 2008, 36(1): 87–90

    Google Scholar 

  84. Xiong X L. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 2006, 34(11): 945–948

    Google Scholar 

  85. Jahn B M, Wu F Y, Hong D W. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from East-Central Asia. Proc Indian Acad Sci (Earth Planet Sci), 2000, 109: 5–20

    Google Scholar 

  86. Xu R H, Jiu C W. A Geochronological study of the Quxu batholith, Xizang (in Chinese). Sci Geol Sin, 1984, (4): 414–422

  87. Li X H, Gui X T, Liu J Y. Three-componten mixing model of Pb and Sr isotopic compositions for the origin of Quxu batholith, Xizang (in Chinese). Geochimica, 1987, (1): 60–66

  88. Hu R Z, Yu J S, Gui X T. Sr-O isotopic constraints on the petrogenesis of Quxu batholith in Xizang (Tibet), China. Chin Sci Bull, 1992, 37(4): 317–320

    Google Scholar 

  89. Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 2007, 96: 225–242

    Google Scholar 

  90. Zhang S Q. Mesozoic and Cenozoic Volcanisms in Central Gangdese: Implications for Lithosphere Evolution of the Tibet Plateau (in Chinese). Doctoral Dissertation. Beijing: China University of Geosciences, 1996

    Google Scholar 

  91. Dong G C. Linzizong volcanic Rocks in Linzhou Volcanic Basin, Tibet: Implications for India-Eurasia Collision Process (in Chinese). Doctoral Dissertation. Beijing: China University of Geosciences, 2002

    Google Scholar 

  92. Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology (in Chinese). Acta Petrol Sin, 2007, 23(2): 185–220

    Google Scholar 

  93. Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon Rev Mineral Geochem, 2003, 53(1): 327–341

  94. Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen in zircon. Nature, 2006, 439: 580–583

    Google Scholar 

  95. Wu F Y, Clift P D and Yang J H. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 2007, 26: TC2014, doi: 10.1029/2006TC002051

    Google Scholar 

  96. Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol, 2007, 153: 177–190

    Google Scholar 

  97. Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci Rev, 2006, 74: 1–72

    Google Scholar 

  98. Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia contact: paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 1992, 20: 395–398

    Google Scholar 

  99. Patriat P, Achache J. Indian-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 1984, 311: 615–621

    Google Scholar 

  100. Klootwijk C T, Conaghan P J, Nazirullah R, et al. Further palaeomagnetic data from Chitral (Eastern Hindukush): Evidence for an early India-Asia contact. Tectonophysics, 1994, 237: 1–25

    Google Scholar 

  101. Klootwijk C T, Peirce J W. India’s and Australia’s pole path since the late Mesozoic and the India-Asia collision. Nature, 1979, 282: 605–607

    Google Scholar 

  102. Patzelt A, Li H M, Wang J D, et al. Paleomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 1996, 259: 259–284

    Google Scholar 

  103. Clift P D. Comment on ‘Palynological evidence for the Palaeocene evolution of the forearc basin, Indus Suture Zone, Ladakh, India’ by R. Upadhyay, Ram-Awatar, R. K. Kar and A. K. Sinha. Terra Nova, 2005, 17: 196–200

    Google Scholar 

  104. Searle M P, Cooper D J W, Rex A J. Collision tectonics of the Ladakh-Zanskar Himalaya. Phil Trans R Soc London, 1988, 326(A): 117–150

    Google Scholar 

  105. Le Fort P. The Himalayan orogenic segment. In: Sengor A M C, ed. Tectonic Evolution of the Tethyan Region. Berlin: Kluwer Acad, 1989. 289–386

    Google Scholar 

  106. Beck R A, Burbank D W, Sercombe W J, et al. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 1995, 373: 55–58

    Google Scholar 

  107. Ding L, Kapp P, Wan X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonic, 2005, 24: TC3001, doi: 10.1029/2004TC001729

    Google Scholar 

  108. Searle M P, Noble S R, Cottle J M, et al. Structure of the North Indian continental margin in the Ladakh-Zanskar Himalayas: Implications for the timing of obduction of the Spontang ophiolite, India-Asia collision and deformation events in the Himalaya. Geol Mag, 1997, 134: 297–316

    Google Scholar 

  109. Corfield R I, Watts A B, Searle M P. Subsidence history of the north Indian continental margin, Zanskar-Ladakh Himalaya, NW india. J Geol Soc London, 2005, 162: 135–146

    Google Scholar 

  110. Gaetani M, Garzanti E. Multicyclic history of the northern India continental margin (northwestern Himalaya). Am Assoc Pet Geol Bull, 1991, 75: 1427–1446

    Google Scholar 

  111. Rowley D. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett, 1996, 145: 1–13

    Google Scholar 

  112. Rowley D. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. J Geol, 1998, 106: 229–235

    Google Scholar 

  113. Willems H, Zhou Z, Zhang B, et al. Stratigraphy of the upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch, 1996, 85: 723–754

    Google Scholar 

  114. Wan X, Ding L. Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance. Acta Palaeontol Sin, 2002, 41: 89–95

    Google Scholar 

  115. Zhu B, Kidd W S F, Rowley D, et al. Age of initiation of the India-Asia collision in the east-central Himalaya. J Geol, 2005, 113: 265–285

    Google Scholar 

  116. Dewey J F, Cande S, Pitman III W C. Tectonic evolution of the India/Eurasia collision zone. Eclogae Geol Helv, 1989, 82: 717–734

    Google Scholar 

  117. Le Fort P. Evolution of the Himalaya. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 1996. 95–109

    Google Scholar 

  118. Tonarini S, Villa I, Oberli F, et al. Eocene age of eclogite metamorphism in the Pakistan Himalaya: Implications for India-Eurasian collision. Terra Nova, 1993, 5: 13–20

    Google Scholar 

  119. de Sigoyer J, Chavagnac V, Blichert-Toft J, et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28: 487–490

    Google Scholar 

  120. Ducea M N, Lutkov V, Minaev V T, et al. Building the Pamirs: The view from the underside. Geology, 2003, 21: 849–852

    Google Scholar 

  121. Kaneko Y, Katayama I, Yamanmoto H, et al. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol, 2003, 21: 589–599

    Google Scholar 

  122. Leech M L, Singh S, Jain A K, et al. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett, 2005, 234: 83–97

    Google Scholar 

  123. Parrish R R, Gough S J, Searle M P, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 2006, 34: 989–992

    Google Scholar 

  124. Ding L, Zhong D L, Yin A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalaya syntaxis (Namche Barwa). Earth Planet Sci Lett, 2001, 192: 423–438

    Google Scholar 

  125. Aitchison J C, Ba D Z, Davis A M, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci Lett, 2000, 183: 231–244

    Google Scholar 

  126. Aitchison J C, Abrajevitch A, Ali J R, et al. New insights into the evolution of the Yarlung Tsangpo suture zone, Xizang (Tibet). Episodes, 2002, 25: 90–94

    Google Scholar 

  127. Aitchison J C, Davis A M, Ali J R, et al. Stratigraphic and sedimentological constraints on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet. In: Dilek Y, Robinson R T, eds. Ophiolites in Earth History. Geol Soc Spec Publ, 2003, 218: 147–164

  128. Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide? J Geophys Res, 2007, 112: B05423, doi:10.1029/2006JB004706

    Google Scholar 

  129. Aitchison J C, Davis A M. Evidence for the multiphase nature of the India-Asia collision from the Yarlung Tsangpo suture zone, Tibet. In: Malpas J G, Fletcher C J N, Ali J R, et al, eds. Aspects of the Tectonic Evolution of China. Geol Soc London Spec Publ, 2004, 226: 217–233

  130. Garzanti, E. Comment on “When and where did India and Asia collide?” by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis. J Geophys Res, 2008, 113: B04411, doi: 10.1029/2007JB005276

    Google Scholar 

  131. Murphy M A, Yin A, Dűrr S B. Did the Indo-Asian collision alone create the Tibetan Plateau? Geology, 1997, 25(8): 719–722

    Google Scholar 

  132. Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bull, 2007, 119(7–8): 917–932

    Google Scholar 

  133. Ding L, Lai Q Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision. Chin Sci Bull, 2003, 48(15): 1604–1610

    Google Scholar 

  134. Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth Planet Sci Lett, 1986, 79: 281–302

    Google Scholar 

  135. Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. GSA Bull, 2004, 116(9–10): 1202–1222

    Google Scholar 

  136. Kapp P, Yin A, Harrison, T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bull, 2005, 117(7–8): 865–878

    Google Scholar 

  137. Li C, Wang T W, Li H M, et al. Discovery of Indosinian megaporphyritic granodiorite in the Gangdise area evidence for the existence of Paleo-Gangdise (in Chinese). Geol Bull China, 2003, 22(5): 364–366

    Google Scholar 

  138. Zhang H F, Xu W C, Guo J Q, et al. Indosinian orogenesis of the Gangdese terrane: evidences from zircon U-Pb dating and petrogenesis of granitoids (in Chinese). Earth Sci, 2007, 32(2): 155–166

    Google Scholar 

  139. He Z H, Yang D M, Zheng C Q, et al. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys (in Chinese). Geol Rev, 2006, 52(1): 100–106

    Google Scholar 

  140. Zhu D C, Mo X X, Zhao Z D, et al. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance (in Chinese). Acta Petrol Sin, 2008, 24(3): 401–412

    Google Scholar 

  141. Zhu D C, Mo X X, Zhao Z D, et al. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective (in Chinese). Earth Sci Front, 2009, 16(2): 1–20

    Google Scholar 

  142. Kang Z Q, Xu J F, Dong Y H, et al. Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa block: Products of southward subducting of the Slainajap ocean (in Chinese)? Acta Petrol Sin, 2008, 24(2): 303–314

    Google Scholar 

  143. Kang Z Q, Xu J F, Wang B D, et al. Geochemistry of Cretaceoous volcanic rocks of Duoni Formation in northern Lhasa block: Discussion of tectonic setting (in Chinese). Earth Sci, 2009, 34(1): 89–104

    Google Scholar 

  144. Davies J H, von Blanckenburg F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 1995, 129: 85–102

    Google Scholar 

  145. van de Zedde D M A, Wortel M J R. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 2001, 20(6): 868–882

    Google Scholar 

  146. Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 1993, 364: 50–54

    Google Scholar 

  147. Turner S, Arnaud N, Liu J, et al. Postcollision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37: 45–71

    Google Scholar 

  148. Williams H M, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29: 339–342

    Google Scholar 

  149. Williams H M, Turner S, Pearce G A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse element modeling. J Petrol, 2004, 45: 555–607

    Google Scholar 

  150. Ding L, Kapp P, Zhong D, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J Petrol, 2003, 44(10): 1833–1865

    Google Scholar 

  151. Zhao Z D, Mo X X, Nomade S, et al. Post-collisional ultrapotassic rocks in Lhasa Block, Tibetan Plateau: Spatial and temporal distribution and its implications (in Chinese). Acta Petrol Sin, 2006, 22(4): 787–794

    Google Scholar 

  152. Bird P. Continental delamination and the Colorado Plateau. J Geophys Res, 1979, 84: 7561–7571

    Google Scholar 

  153. Houseman G A, McKenzie D P, Molnar P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res, 1981, 86(B7): 6115–6132

    Google Scholar 

  154. Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol, 1999, 40(9): 1399–1424

    Google Scholar 

  155. Kohn M, Parkinson C D. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology, 2002, 30: 591–594

    Google Scholar 

  156. DeCelles P G, Robinson D M, Zandt G. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 2002, 21(6): 1062, doi:10.1029/2001TC001322, 2002

    Google Scholar 

  157. Maheo G, Guillot S, Blichert-Toft J, et al. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Planet Sci Lett, 2002, 195: 45–58

    Google Scholar 

  158. Zhu J, Liu Z X, Du Y S, et al. New results and major progress in regional geological survey of the Lhaze County Sheet (in Chinese). Geol Bull China, 2004, 23(5–6): 471–474

    Google Scholar 

  159. Zhu J, Du Y S, Liu Z X, et al. Mesozoic radiolarian chert from the middle sector of the Yarlung Zangbo suture zone, Tibet and its tectonic implications. Sci China Ser D-Earth Sci, 2006, 49(4): 348–357

    Google Scholar 

  160. Zheng L L, Liao G Y, Geng Q R, et al. New results and major progress in regional geological survey of the Medog County Sheet (in Chinese). Geol Bull China, 2004, 23(5–6): 458–462

    Google Scholar 

  161. Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction? Geology, 2000, 28(6): 535–538

    Google Scholar 

  162. Kay S M, Abbruzzi J M. Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30°S and 32°S. Tectonophysics, 1996, 259(1–3): 15–28

    Google Scholar 

  163. Dewey J F, Shackelton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau. Phil Trans R Soc Lond, 1988, A327: 379–413

    Google Scholar 

  164. Pearce J A, Mei H. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud. Phil Trans R Soc London, 1988, 327: 203–213

    Google Scholar 

  165. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 1984, 25(4): 956–983

    Google Scholar 

  166. Rollison H R. Translated by Yang X M, Yang X Y, Chen S X. Using Geochemical Date: Evalution, Presentation, Interpretation (in Chinese). Hefei: University of Science and Technology Press, 2000

    Google Scholar 

  167. Qiu R Z, Deng J F, Zhou S, et al. Sr-Nd isotope studies of Mesozoic-Cenozoic granites in Qinghai-Tibetan Plateau (in Chinese). Acta Geosci Sin, 2003, 24(6): 611–617

    Google Scholar 

  168. Geng Q R. The Late-Paleozoic Volcanic Rocks in the Gangdise Zone in Tibet: Petrology, Geochemistry and Tectonic Implications (in Chinese). Doctoral Dissertation. Beijing: China University of Geosciences, 2007

    Google Scholar 

  169. Wang L Q, Pan G T, Zhu D C, et al. Carboniferous-Permian island arc orogenesis in the Gangdise belt, Tibet, China: Evidence from volcanic rocks and geochemistry (in Chinese). Geol Bull China, 2008, 27(9): 1509–1534

    Google Scholar 

  170. Schaltegger U, Zeilinger G, Frank M, et al. Multiple mantle sources during island arc magmatism: U-Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova, 2002, 14: 461–468

    Google Scholar 

  171. Heuberger S, Schaltegger U, Burg J P, et al. Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: Evidence for subduction and continued convergence after India-Asia collision. Swiss J Geosci, 2007, 100: 85–107

    Google Scholar 

  172. Ravikant V, Wu F Y, Ji W Q. Zircon U-Pb and Hf isotopic constraints on petrogenesis of the Cretaceous-Tertiary granites in eastern Karakoram and Ladakh, India. Lithos, 2009, 110:153–166

    Google Scholar 

  173. Liang Y H, Chung S L, Liu D Y, et al. Detrital zircon evidence from Burma for reorganization of the eastern Himalaya river system. Am J Sci, 2008, 308: 618–638

    Google Scholar 

  174. Chiu H Y, Chung S L, Wu F Y, et al. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 2009, doi: 10.1016/j.tecto.2009.02.034

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuYuan Wu.

Additional information

Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q09-06) and National Natural Science Foundation of China (Grant No. 40721062)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, W., Wu, F., Liu, C. et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci. China Ser. D-Earth Sci. 52, 1240–1261 (2009). https://doi.org/10.1007/s11430-009-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-009-0131-y

Keywords

Navigation