Skip to main content
Log in

Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Zircon LA-ICP-MS U-Pb dating reveals that the Baimashan Pluton is composed mainly of late Indosinian (204.5±2.8 Ma-209.2±3.8 Ma) biotite granodiorites/monzonitic granites (LIGs) and early Yanshanian (176.7±1.7 Ma) two-micas monzonitic granites (EYGs), and the coeval (203.2±4.5 Ma-205.1±3.9 Ma) mafic microgranular enclaves (MMEs) are generally found in the former. In addition, the ages of cores within zircons from LIGs and MMEs ranging from 221.4±4.0 Ma to 226.5±4.1Ma provide evidence of multistage magma intrusion during Indosinian in the study area. Measured 3010±20.6 Ma of inherited zircon age suggests that there may be recycling Archaean curstal material in existence in this area. LIGs and EYGs share some similar geochemical features: subalkaline and peraluminous granites, enrichment of Th, U, K, Ta, Zr, Hf and LREE but depletion of Ba, Nb, P, Ti and Eu, low ɛ Nd(t) values but high (87Sr/86Sr)i ratios, and old T 2DM (ca. 1.9–2.0 Ga). The behaviors of incompatible elements and REE are mainly dominated by fractional crystallization of plagioclase, K-feldspar, ilmenite and apatite, but that of Sr isotope mainly controlled by EC-AFC. They are crust-sourced and derived from partial melting of paleo-Proterozoic metagreywackes and related to biotite dehydration melting. LIGs are formed in post-collisional tectonic setting as crustal local extension and thinning during late Indosinian. But EYGs may be evolved products of congeneric granitic magma with LIGs formed in late Indoinian, which were emplaced again when crust underwent extensive thinning and extension in post-orogenic tectonic setting during Yanshanian in SC after undergoing EC-AFC. MMEs should be cognate enclaves and derived from liquid immiscibility of host magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen P R, Hua R M, Zhang B T, et al. Early Yanshanian post-orogenic granitoids in the Nanling region-Petrological constraints and geodynamic settings. Sci China Ser D-Earth Sci, 2002, 48(5): 755–768

    Article  Google Scholar 

  2. Xu X S, Deng P, O’Reilly SY, et al. Single zircon LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Chin Sci Bull, 2003, 48(17): 1892–1899

    Article  Google Scholar 

  3. Jahn B M, Zhou X H, Li J L. Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics, 1990, 183: 145–160

    Article  Google Scholar 

  4. Chen P R, Zhang B T, Kong X G, et al. Geochemical characteristics and tectonic implication of Zhaibei A-type granitic intrusives in south Jiangxi province. Acta Petrol Sin (in Chinese), 1998, 4(3): 163–173

    Google Scholar 

  5. Li X H. Cretaceous magmatism and lithospheric extension in Southeast China. J Asian earth Sci, 2000, 18: 293–305

    Article  Google Scholar 

  6. Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 2000, 326(3–4): 269–287

    Article  Google Scholar 

  7. Li X H, Chen Z G, Liu D Y, et al. Jurassic gabbro-granite-syenite suites from southern Jiangxi Province (SE China): age, origin and tectonic significance. Int Geol Rev, 2003, 45: 898–921

    Google Scholar 

  8. Wang Y J, Fan W M, Guo F, et al. Geochemistry of Early Mesozoic potassium-rich dioritic-graniodioritic intrusions in Southeastern Hunan Province, South China: Petrogenesis and tectonic implication. Geochem J, 2003, 37: 427–448

    Google Scholar 

  9. Chen P R, Zhou X M, Zhang W L, et al. Petrogenesis and significance of early Yanshanian syenite-granite complex in eastern Nanling Range. Sci China Ser D-Earth Sci, 2005, 48(7): 912–924

    Article  Google Scholar 

  10. Zhou X M. My thinking about granite geneses of South China. Ceol J China Univ (in Chinese), 2003, 9(4): 556–565

    Google Scholar 

  11. Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitioids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 2006, 29(1): 26–33

    Google Scholar 

  12. Regional Geological Survey Unit, Bureau of Geology and Mineral Resources of Hunan Province. Geological maps of granitic plutons in Hunan Province. Hunan Geology (in Chinese), 1995, 8(Supp.): 1–73

    Google Scholar 

  13. Regional Geological Survey Unit, Bureau of Geology and Mineral Resources of Hunan Province. Distinguishing of unit-ultraunit of granites in Hunan Province and mineralization. Hunan Geology (in Chinese), 1995, 8(Supp.): 1–84

    Google Scholar 

  14. Deprat J. Etude des plissements et des zones decrasement de la moenne et de la basse Riviere Noire. Memoire du Service Geologique Indochine, 1914, 3: 59

    Google Scholar 

  15. Carter A, Roques D, Bristow C. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermo-tectonism (Indosinian orogeny) in Vietnam. Geology, 2001, 29: 211–214

    Article  Google Scholar 

  16. Meng Q R, Zhang G W. Geologic framework and tectonic evolution of Qinling orogen, central China. Tectonophysics, 2000, 323: 183–196

    Article  Google Scholar 

  17. Hsü K J, Sun S, Chen H H, et al. Mesozoic overthrust tectonics in south China. Geology, 1988, 16: 418–421

    Article  Google Scholar 

  18. Hsü K J, Li J L, Chen H H, et al. Tectonic of South China: Key to understanding west Pacific geology. Tectonophys, 1990, 183: 9–39

    Article  Google Scholar 

  19. Wang Q, Li J W, Jian P, et al. Alkaline syenites in eastern Cathaysia (South China) link to Permian-Triassic transtension. Earth Planet Sci Lett, 2005, 230: 339–354

    Article  Google Scholar 

  20. Wang Y J, Zhang Y H, Fan W M, et al. Numerical modeling of the formation of Indo-Sinian pealuminous granitoids in Huanan Province: basaltic underplating versus tectonic thickening., Sci China Ser D-Earth Sci, 2002, 45(11): 1042–1056

    Article  Google Scholar 

  21. Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J Geophys Res, 1996, 107(B7): 16137–16154

    Article  Google Scholar 

  22. Rowley D B, Ziegler A M and Nie G. Comment on “Mesozoic overthrust tectonics in South China”. Geology, 1997, 17: 384–386

    Article  Google Scholar 

  23. Sun T, Zhou X M, Chen P R, et al. Strongly peraluminous granites of Mesozoic in eastern Nanling Range, Southern China: Petrogenesis and implications for tectonics. Sci China Ser D-Earth Sci, 2005, 48(2): 165–174

    Article  Google Scholar 

  24. Song B, Zhang Y H, Wan Y S, et al. Target preparation, age determination and discussion about some phenomenon of SHRIMP zircon isotopic analysis. Geol Rev (in Chinses), 2002, 5(Supp.): 26–30

    Google Scholar 

  25. Yuan H L., Wu F Y, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chin Sci Bull, 2003, 48(22): 2411–2421

    Google Scholar 

  26. Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000 51: 507–513

    Article  Google Scholar 

  27. Huang X, Wu L R. Nd-Sr isotopes of granitoids from Shaanxi Province and their significance for tectonic evolution. Acta Petrol Sin (in Chinese), 1990, 6(2): 1–11

    Google Scholar 

  28. Ling W L, Gao S, Chen J P, et al. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: constraint from the ELA-ICPMS U-Pb. Complexes. Acta Petrol Sin (in Chinese), 2006, 22(2): 387–396

    Google Scholar 

  29. Chen J F, Jahn B M. Nd, Sr, Pb isotopic tracing and crustal evolution of Southeastern China. In: Zheng Y F, eds. Chemistry Geodynamics (in Chinese). Beijing: Science Press, 1999. 262–287

    Google Scholar 

  30. Ludwig K R. ISOPLOT: A plotting and regression program for radiogenic-isotope data. US Geological Survey Open-File Report, 1991, 39

  31. Li X H, Liu Y, Tu X L, et al. Mutipile-stage evolution of zircon U-Pb isotopic systematics in S-type granites and its chronological significance: a case study of Sanfang granite, Northern Guangxi. Acta Mineral Sin (in Chinses), 1996, 16(2): 170–177

    Google Scholar 

  32. Mezger K, Krogstad E J. Interpretation of discordant U-Pb zircon ages: an evalution. J Metamorph Geol, 1997, 15: 127–140

    Article  Google Scholar 

  33. Chen D G, Li B X, Xia Q K, et al. An evaluation of zircon U-Pb dating for metamorphic rocks and comments on zircon ages of Dabie orogen. Acta Petrol Sin (in Chinese), 2001, 17(1): 129–138

    Google Scholar 

  34. Ding X, Chen P R, Chen W F, et al. Single zircon LA-ICP-MS U-Pb dating of Weishan granite (Hunan, South China) and its petrogenetic significance. Sci China Ser D-Earth Sci, 2006, 49(8): 816–827

    Article  Google Scholar 

  35. Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale. J Geol Sci London, 1992, 149: 171–184

    Google Scholar 

  36. Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 2003, 53: 469–499

    Article  Google Scholar 

  37. Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 2004, 49(15): 1554–1569

    Article  Google Scholar 

  38. Pidgon R T, Nemchin A A, Hitchen G J. Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib Mineral Petrol, 1998, 132: 288–299

    Article  Google Scholar 

  39. Wang Y J, Fang W M, Liang X Q, et al. SHRIMP zircon U-Pb chronology of Indosinian granites in Hunan Province and its petrogenetic implications. Chin Sci Bull, 2005, 50(13): 1395–1403

    Article  Google Scholar 

  40. Roddick J C, Bevier M L. U-Pb dating of granites with inherited zircon: Conventional and ion microprobe results from two Paleozoic plutons, Canadian Appalachians. Chem Geol, 1995, 119: 307–329

    Article  Google Scholar 

  41. Charlier B, Zellmer G. Some remarks on U-Th mineral ages from igneous rocks with prolonged-crystallization histories. Earth Planet Sci Lett, 2000,183: 457–469

    Article  Google Scholar 

  42. Corfu F. Multistage zircon and titanite growth and inheritance in an Archean gneiss complex, Winnipeg River Subprovince, Ontario. Earth Planet Sci Lett, 1996,141: 175–186

    Article  Google Scholar 

  43. Nasdala L, Wenzel T and Pidgeon R T, et al. Internal structures and dating of complex zircons from Meissen Massif monzonites, Saxony. Chem Geol, 1999, 156: 331–341

    Article  Google Scholar 

  44. Wang X, Griffin W L, Wang Z C, et al. Hf isotope composition of zircons and implication for the petrogenesis of Yajiangqiao granite, Hunan Province, China. Chin Sci Bull, 2003, 48(10): 995–998

    Article  Google Scholar 

  45. Guo F, Fan W M, Lin G, et al. Petrological characteristics and dating on gneiss xenoliths in Mesozoic basalts in Huziyan, Daoxian region, Huan province. J Changchun Univ Earth Sci (in Chinese), 1997, 27(1): 25–30

    Google Scholar 

  46. Chen J F, Jahn B M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 1998. 284: 101–133

    Article  Google Scholar 

  47. Shen W Z, Ling H F, Li W X, et al. Study on the Nd-Sr isotopic compositions of granitoids in SE China. Geol J China Univ (in Chinese), 1999, 5(1): 22–32

    Google Scholar 

  48. White A J R, Chappell B W. Ultrametamorphism and granitoid genesis. Tectonophysics, 1977, 43: 7–22

    Article  Google Scholar 

  49. Chen X M, Wang R C, Liu C S, et al. Isotopic dating and genesis for Fugang biotite granties of Conghua area, Guangdong Province. Geol J China Univ (in Chinese), 2002, 8(3): 293–307

    Google Scholar 

  50. Ling H F, Shen W Z, Deng P, et al. Study of geochemistry and petrogenesis of the Maofeng granite northern Guangdong province. Acta Petrol Sin (in Chinese), 2005, 21(3): 677–687

    Google Scholar 

  51. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London: Geological Society Publ, 1989. 42: 313–345.

    Google Scholar 

  52. Taylor S R, Maclennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 1–312

    Google Scholar 

  53. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environment. Lithos, 1999, 46: 605–626

    Article  Google Scholar 

  54. Chen J F, Guo X S, Tang J F, et al. Nd isotopic model ages: implications of the growth of the continental crust of southeastern China. J Nanjing Univ (Natural Sciences) (in Chinese), 1999, 35(6): 649–658

    Google Scholar 

  55. Ling H F, Shen W Z, Wang R C et al. Geochemical Characteristics and Genesis of Neoproterozoic Granitoids in the Northwestern Margin of the Yangtze Block. Phys Chem Earth, 2001, 26(9–10): 805–819

    Google Scholar 

  56. Chappell B W. Magma mixing and the production of compositional variation within granite suites: evidence from the granites of Southeastern Australia. J Petrol, 1996, 37: 449–470

    Article  Google Scholar 

  57. White A J R, Chappell B W, Wyborn D. Application of the restite model to the Deedick granodiorite and its enclaves — a reinterpretation of the observations and data Maas et al. J Petrol, 1999, 40: 413–421

    Article  Google Scholar 

  58. Barbarin B, Didier J. Conclusions: enclaves and granite petrology. In: Didier J, Barbarin B, eds. Enclaves and Granite Petrology. Amsterdam: Elsevier, 1991. 545–549

    Google Scholar 

  59. Silva M M V G, Neiva A M R, Whitehouse M J. Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos, 2000, 50: 153–170

    Article  Google Scholar 

  60. Maas R, Nicholls I A, Legg C. Igneous and metamorphic enclaves in the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia: petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. J Petrol, 1997, 38: 815–841.

    Article  Google Scholar 

  61. Dahlquist JA. Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. J S Am Earth Sci, 2002, 15: 643–655

    Article  Google Scholar 

  62. Donaire T, Pascual E, Pin C, et al. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contrib Mineral Petrol, 2005, 149: 247–265

    Article  Google Scholar 

  63. Vernon R H. Microgranitoid enclaves in granites: globules of hybrid magma quenched in a plutonic environment. Nature, 1984, 309: 438–439

    Article  Google Scholar 

  64. Hibbard M J. The magma mixing origin of mantled feldspar. Contrib Mineral Petrol, 1981, 76: 158–170

    Article  Google Scholar 

  65. Nelson ST, Montana A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Miner, 1992, 77: 1242–1249

    Google Scholar 

  66. Zhang X L, Qiu J S, Wang D Z, et al. Geochemistry and magmatic mixing of the Putuoshan biotite moyites and their enclaves, Zhejiang Province. Acta Petrol Mineral (in Chinese), 2005, 24(2): 81–92

    Google Scholar 

  67. Zhou J C, Xu X S. Microgranitoid enclaves and related diffusion and liquid immiscibility of magmas. Geol Rew (in Chinese), 1992, 38(3): 297–309

    Google Scholar 

  68. Zhou J C Xu X S, Tao X C. Microgranitoid enclaves in some l-and S-type granites from Southern China. Chin J Geochem, 1994, 13(1): 24–39

    Google Scholar 

  69. Wu F Y, Jahn B M, Wild S A, et al. Highly fractional I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 2003, 66: 241–273

    Article  Google Scholar 

  70. Arth J G. Behaviour of trace elements during magmatic processes: a summary of theoretical models and their applications. J Res US Geol Surv, 1976, 4: 41–4

    Google Scholar 

  71. Yu J H, Xu X S, Zhou X M. Late Mesozoic crust-mantle interaction and lower crust components in South China: A geochemical study of mafic granulite xenoliths from Cenozoic basalts. Sci China Ser D-Earth Sci, 2003, 46(5): 447–460

    Article  Google Scholar 

  72. Spera F J, Bohrson W A. Energy-constrained open-system magmatic process I: general model and energy-constranied assimilation and fractional crystallization (EC-AFC) formulation. J Petol, 2001, 42: 999–1018

    Article  Google Scholar 

  73. Rollison H R. Using geochemical data: evaluation, presentation, interpretation. London: Longman Group UK Ltd, 1993. 1–351

    Google Scholar 

  74. Sun T, Chen P R, Zhou X M, et al. Strong peraluminous granites in eastern Nanling mountains, China: study on muscovite. Geol Rev (in Chinese), 2002, 48(5): 518–525

    Google Scholar 

  75. Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45: 29–44

    Article  Google Scholar 

  76. Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 2000, 50: 51–53

    Article  Google Scholar 

  77. Visonà D, Lombardo B. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos, 2002, 62: 125–150

    Article  Google Scholar 

  78. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagram for the tectonic interpretation of granitic rocks. J Petrol, 1984, 25: 956–983

    Google Scholar 

  79. Hairs N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism. In: Coward M P, Reis A C, eds. Collision tectonics. London: Spec Publ Grol Soc Lond, 1986, 19: 67–81

    Google Scholar 

  80. Xiao Q H, Deng J F, Ma D S, et al. The Ways of Investigation on Granitoids (in Chinese). Beijing: Geological Publishing House, 2002. 1–294

    Google Scholar 

  81. Li X H, Li Z X, Li W X, et al. Initiation of the Indosinian Orogeny in South China: evidence for a Permian magmatic arc on Hainan Island. J Geol, 2006, 114(3): 341–353

    Article  Google Scholar 

  82. Shu B, Wang P A, Li Z J, et al. Research on mineralizing age of Baolun gold deposit in Hainan Province and its significance. Geoscience (in Chinese), 2004, 18(3): 316–320

    Google Scholar 

  83. Xie C F, Zhu J C, Zhao Z J, et al. Zircon SHRIMP U-Pb age dating of garnet-acmite syenite: Constraints on the Hercynian-Indosinian tectonic evolution of Hainan Island. Geol J China Univ (in Chinese), 2005, 11(1): 47–57

    Google Scholar 

  84. Deng X G, Chen Z G, Li X H, et al. SHRIMP U-Pb zircon dating of the Darongshan-Shiwandashan granitoid belt in Southeastern Guangxi, China. Geol Rev (in Chinese), 2004, 50(4): 426–432

    Google Scholar 

  85. Shao J G. 40Ar/36Ar-39Ar/36Ar isochron dating for peripheral faults of Yunkai massif. Guangdong Geol (in Chiese), 1995, 10(2): 34–40

    Google Scholar 

  86. Qiu J S, McInnes B I A, Xu X S, et al. Zircon ELA-ICP-MS dating for Wuliting Pluton at Dajishan, Southern Jiangxi and new recognition about its relation to tungsten mineralization. Geol Rev (in Chinese), 2004, 50(2): 125–133

    Google Scholar 

  87. Zhang W L, Hua R M, Wang R C, et al. Single zircon U-Pb isotopic age of the Wuliting granite in Dajishan area of Jiangxi, and its geological implication. Acta Geol Sin (in Chinese), 2004, 78(3): 352–358

    Google Scholar 

  88. Lepvrier C, Maluski H, Van Vuong N, et al. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam): 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 1997, 283: 105–128

    Article  Google Scholar 

  89. Nam T N. Thermotectonic events from Early Proterozoic to Miocene in the Indochina craton: implication of K-Ar ages in Vietnam. J Asian Earth Sci, 1998, 16: 475–484

    Article  Google Scholar 

  90. Lan C Y, Chung S L, Shen J J S, et al. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam. J Asian Earth Sci, 2000, 18: 267–280

    Article  Google Scholar 

  91. Lan C Y, Chung S L, Long T V, et al. Geochemical and Sr-Nd isotopic constraints from the Kontum massif, central Vietnam on the crustal evolution of the Indochina block. Precambrian Res, 2000, 122: 7–27

    Article  Google Scholar 

  92. Maluski H, Lepvrier C, Jolivet L, et al. Ar-Ar and fission-track ages in the Song Chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam. J Asian Earth Sci, 2001, 19: 233–248

    Article  Google Scholar 

  93. Nam T N, Sano Y, Terada K, et al. First SHRIMP U-Pb zircon dating of granulites from the Kontum massif (Vietnam) and tectonothermal implications. J Asian Earth Sci, 2001, 19: 77–84

    Article  Google Scholar 

  94. Liu F L, Xu Z Q, Yang J S, et al. Geochemical characteristics and UHP metamorphism of granitic gneisses in the main drilling hole of Chinese Continental Scientific Driling Project and its adjacent area. Acta Petrol Sin (in Chinese), 2004, 20(1): 9–26

    Google Scholar 

  95. Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 2006, 34(2): 97–100

    Article  Google Scholar 

  96. Liang X Q, Li X H, Qiu Y X, et al. Indosinian collisional orogeny: evidence from structural and sedimentary geology in Shiwandashan basin, south China. Geotectonica et Metallogenia (in Chinese), 2005, 29: 99–112

    Google Scholar 

  97. Patiño Dounce A E Humphreys E D, Johnston A D. Anatexis and metamorphism in tec-tonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth Planet Sci Lett, 1990, 97: 290–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen PeiRong.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40372036) and the Key Project of Ministry of Education of China (Grant No. 306007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Chen, P., Huang, H. et al. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China. SCI CHINA SER D 50, 1606–1627 (2007). https://doi.org/10.1007/s11430-007-0073-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-007-0073-1

Keywords

Navigation