Skip to main content
Log in

Diabetische Nephropathie 2023 – Beginn eines neuen Zeitalters

Diabetic nephropathy 2023—the beginning of a new era

  • Leitthema
  • Published:
Die Diabetologie Aims and scope

Zusammenfassung

Die in den letzten Jahrzehnten schnell steigende Zahl der Menschen mit Diabetes zeigt auf, wie wenig bisher für die Prävention dieser Stoffwechselerkrankung getan wurde. Auch die Inzidenz und Prävalenz der diabetischen Nephropathie nehmen nach einer Phase der Stagnation wieder zu. Zu niedrige und zu hohe glomeruläre Filtrationsraten sind als signifikantes kardiorenales Risiko anzusehen. Mit der Einführung neuer hochwirksamer Stoffgruppen wird die früher übliche zeitige Umstellung auf Insulin bei diabetischen Spätschäden nach und nach verdrängt. Inhibitoren des Angiotensinkonversionsenzyms (ACE) und Sartane senken den Blut- und intraglomerulären Druck und wirken dadurch gleichzeitig antihypertensiv und antiproteinurisch. Die SGLT-2-Inhibitoren (SGLT: Natrium-Glukose-Kotransporter) sind inzwischen der Goldstandard für alle Nephropathien. Dabei sollte die SGLT-2-Inhibitor-Therapie möglichst frühzeitig begonnen werden, um gute Langzeiteffekte zu erzielen. Mit diesen Substanzen können auch bei Herz- und Niereninsuffizienz noch gute Effekte erzielt werden, die Therapie darf jedoch bei einer eGFR (geschätzte glomeruläre Filtationsrate) von < 25 ml/min und 1,73 m2 (Dapagliflozin) oder < 20 ml/min und 1,73 m2 (Empagliflozin) nicht mehr begonnen werden. Andererseits sollte sie bei einer eGFR von 20 ml/min und 1,73 m2 noch nicht beendet werden, da kardiorenale Vorteile auch unter bereits hochgradig eingeschränkter Nierenfunktion nachweisbar sind. Mineralokortikoidrezeptorantagonisten wie Finerenon wirken ebenfalls kardiorenal protektiv. Die EASD (europäische Diabetesgesellschaft) und die ESC (europäische Gesellschaft für Kardiologie) empfehlen in ihrer gemeinsamen Leitlinie GLP-1-Rezeptor-Agonisten (GLP: glukagonähnliches Peptid) und SGLT-2-Hemmer als Erstlinientherapie für die Stoffwechseleinstellung bei Menschen mit Typ-2-Diabetes mit einem hohen Risiko für atherosklerotische Komplikationen.

Abstract

The rapidly increasing number of people with diabetes in recent decades shows how little has been done to prevent this metabolic disease. The incidence and prevalence of diabetic nephropathy is also increasing again after a period of stagnation. Glomerular filtration rates that are too low or too high must be regarded as a significant cardiorenal risk. With the introduction of new, highly effective groups of drugs, the previously common practice of switching to insulin for late diabetic damage will gradually be replaced. Angiotensin-converting enzyme (ACE) inhibitors and sartans reduce blood and intraglomerular pressure and, thus, have an antihypertensive and antiproteinuric effect at the same time. The sodium–glucose cotransporter 2 inhibitors (SGLT2i) are now the gold standard for all nephropathies. SGLT2i therapy should be started as early as possible in order to achieve good long-term effects. Good effects can still be achieved with these drugs for cardiac and renal insufficiency, but therapy should no longer be started if the estimated glomerular filtration rate (eGFR) is < 25 ml/min and 1.73 m2 (dapagliflozin) or < 20 ml/min and 1.73 m2 (empagliflozin). On the other hand, it should not yet be discontinued at an eGFR of 20 ml/min and 1.73 m2, as cardiorenal benefits are also detectable in patients with already severely impaired renal function. Mineralocorticoid receptor antagonists such as finerenone also have cardiorenal protective effects. In their joint guideline, the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC) recommend glucagon-like peptide‑1 (GLP 1) receptor agonists and SGLT2i as first-line therapy for metabolic control in people with type 2 diabetes with a high risk of atherosclerotic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

ACE:

Angiotensinkonversionsenzym

AKI:

Akute Nierenschädigung („acute kidney injury“)

ASCVD:

Atherosklerotische kardiovaskuläre Erkrankung („atherosclerotic cardiovascular disease“)

CKD:

Chronische Nierenerkrankung („chronic kidney disease“)

CVD:

Kardiovaskuläre Erkrankung („cardiovascular disease“)

CVOT:

Untersuchung des kardiovaskulären Ergebnisses („cardiovascular outcome trial“)

DPP:

Dipeptidylpeptidase

DTPA:

Diethylentriaminpentaessigsäure („diethylenetriamine-pentaacetic acid“)

EASD:

Europäische Diabetesgesellschaft (European Association for the Study of Diabetes)

eGFR:

Geschätzte („estimated“) glomeruläre Filtrationsrate

eGFRCys :

Auf der Basis des Cystatin-C-Spiegels geschätzte GFR

eGFRKrea :

Auf der Basis des Kreatininspiegels geschätzte GFR

eGFRKrea+Cys :

Kombinierte geschätzte GFR, eGFR aus Cystatin C und Serumkreatinin

ERA:

Endothelinrezeptorantagonist

ESC:

Europäische Gesellschaft für Kardiologie (European Society of Cardiology)

ESRD:

Terminales Nierenversagen („end-stage renal disease“)

FS:

Fettsäure

GFR:

Glomeruläre Filtrationsrate

GIP:

Glukoseabhängiges insulinotropes Peptid (auch als gastroinhibitorisches Peptid bezeichnet)

GLP:

Glukagonähnliches („glucagon-like“) Peptid 1

GLP-1-RA:

GLP-1-Rezeptor-Agonisten

HbA1c :

Glykohämoglobin

HFpEF:

Herzinsuffizienz mit erhaltener Ejektionsfraktion („heart failure with preserved ejection fraction“)

HHF:

Hypertensive Herzinsuffizienz

KDIGO :

Kidney Disease: Improving Global Outcomes

MACE:

Schwerwiegendes unerwünschtes kardiales Ereignis („major adverse cardiac event“)

mGFR:

Direkt gemessene glomeruläre Filtrationsrate

MRA:

Mineralokortikoidrezeptorantagonist

NAFLD:

Nichtalkoholische Fettlebererkrankung („non-alcoholic fatty liver disease“)

nsMRA:

Nichtsteroidaler Mineralokortikoidrezeptorantagonist

PEP:

Primärer Endpunkt

RAAS:

Renin-Angiotensin-Aldosteron-System

RAAS‑I:

Inhibitor(en) des Renin-Angiotensin-Aldosteron-Systems

RCT:

Randomisierte kontrollierte Studie („randomized controlled trial“)

SEP:

Sekundärer Endpunkt

SGLT‑2:

Natrium-Glukose-Kotransporter 2 („sodium glucose co-transporter 2“)

SGLT-2‑I:

Inhibitor(en) des SGLT‑2

T2D:

Typ-2-Diabetes

UACR:

Albumin-Kreatinin-Verhältnis im Urin

Literatur

  1. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787

    Article  CAS  PubMed  Google Scholar 

  2. - (2023) Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402(10397):203–234

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu W, Zhang D, Wang R, Chen J, Di Tao ZJ et al (2023) Global trends in the burden of chronic kidney disease attributable to type 2 diabetes: An age-period-cohort analysis. Diabetes Obes Metab

  4. Moriconi D, Sacchetta L, Chiriacò M, Nesti L, Forotti G, Natali A et al (2023) Glomerular Hyperfiltration Predicts Kidney Function Decline and Mortality in Type 1 and Type 2 Diabetes: A 21-Year Longitudinal Study. Diabetes Care 46(4):845–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu EL, Levey AS, Coresh J, Elinder C‑G, Rotmans JI, Dekker FW et al (2023) Accuracy of GFR Estimating Equations in Patients with Discordances between Creatinine and Cystatin C-Based Estimations. J Am Soc Nephrol 34(7):1241–1251

    Article  PubMed  Google Scholar 

  6. Wanner C et al (2016) Empagliflozin and progression of kidney disease in T2D. New Engl J Med 375:323–334

  7. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR et al (2023) Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 388(2):117–127

    Article  CAS  PubMed  Google Scholar 

  8. Butler J, Packer M, Siddiqi TJ, Böhm M, Brueckmann M, Januzzi JL et al (2023) Efficacy of Empagliflozin in Patients With Heart Failure Across Kidney Risk Categories. J Am Coll Cardiol 81(19):1902–1914

    Article  CAS  PubMed  Google Scholar 

  9. Büttner F, Barbosa CV, Lang H, Tian Z, Melk A, Schmidt BMW (2023) Treatment of diabetic kidney disease. A network meta-analysis. PLoS ONE 18(11):e293183

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fletcher RA, Jongs N, Chertow GM, McMurray JJV, Arnott C, Jardine MJ et al (2023) Effect of SGLT2 Inhibitors on Discontinuation of Renin-angiotensin System Blockade: A Joint Analysis of the CREDENCE and DAPA-CKD Trials. J Am Soc Nephrol 34(12):1965–1975

    Article  PubMed  Google Scholar 

  11. Woodhams LM, Chalmers L, Sim TF, Yeap BB, Schlaich MP, Schultz C et al (2023) Efficacy and safety of sodium glucose cotransporter 2 inhibitors plus standard care in diabetic kidney disease: A systematic review and meta-analysis. J Diabetes Complicat 37(6):108456

    Article  CAS  Google Scholar 

  12. Durkin M, Blais J (2021) Linear Projection of Estimated Glomerular Filtration Rate Decline with Canagliflozin and Implications for Dialysis Utilization and Cost in Diabetic Nephropathy. Diabetes Ther 12(2):499–508

    Article  CAS  PubMed  Google Scholar 

  13. Fernández-Fernandez B, Sarafidis P, Soler MJ, EMPA-KIDNEY OA (2023) expanding the range of kidney protection by SGLT2 inhibitors. Clin Kidney J 16(8):1187–1198

    Article  PubMed  PubMed Central  Google Scholar 

  14. Staplin N, Haynes R, Judge PK, Wanner C, Green JB, Emberson J et al (2024) Effects of empagliflozin on progression of chronic kidney disease: a prespecified secondary analysis from the empa-kidney trial. Lancet Diabetes Endocrinol 12(1):39–50

    Article  Google Scholar 

  15. Oshima M, Jardine MJ, Agarwal R, Bakris G, Cannon CP, Charytan DM et al (2021) Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int 99(4):999–1009

    Article  CAS  PubMed  Google Scholar 

  16. Cherney DZI, Ferrannini E, Umpierrez GE, Peters AL, Rosenstock J, Powell DR et al (2023) Efficacy and safety of sotagliflozin in patients with type 2 diabetes and stage 3 chronic kidney disease. Diabetes Obes Metab 25(6):1646–1657

    Article  CAS  PubMed  Google Scholar 

  17. Cao H, Rao X, Jia J, Yan T, Li D (2023) Effects of sodium-glucose co-transporter-2 inhibitors on kidney, cardiovascular, and safety outcomes in patients with advanced chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 60(3):325–335

    Article  CAS  PubMed  Google Scholar 

  18. Maddaloni E, Cavallari I, La Porta Y, Appetecchia A, D’Onofrio L, Grigioni F et al (2023) Impact of baseline kidney function on the effects of sodium-glucose co-transporter-2 inhibitors on kidney and heart failure outcomes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 25(5):1341–1350

    Article  CAS  PubMed  Google Scholar 

  19. Rahman H, Khan SU, Lone AN, Ghosh P, Kunduru M, Sharma S et al (2023) Sodium-Glucose Cotransporter‑2 Inhibitors and Primary Prevention of Atherosclerotic Cardiovascular Disease: A Meta-Analysis of Randomized Trials and Systematic Review. JAHA 12(16):e30578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koshino A, Oshima M, Arnott C, Fletcher RA, Bakris GL, Jardine M et al (2023) Effects of canagliflozin on liver steatosis and fibrosis markers in patients with type 2 diabetes and chronic kidney disease: A post hoc analysis of the CREDENCE trial. Diabetes Obes Metab 25(5):1413–1418

    Article  CAS  PubMed  Google Scholar 

  21. Beernink JM, Persson F, Jongs N, Laverman GD, Chertow GM, McMurray JJV et al (2023) Efficacy of Dapagliflozin by Baseline Diabetes Medications: A Prespecified Analysis From the DAPA-CKD Study. Diabetes Care 46(3):602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu T, Jian X, Li L, Chu S, Fan Z (2023) The Association between Dapagliflozin Use and the Risk of Post-Contrast Acute Kidney Injury in Patients with Type 2 Diabetes and Chronic Kidney Disease: A Propensity-Matched Analysis. Kidney Blood Press Res 48(1):752–760

    Article  CAS  PubMed  Google Scholar 

  23. Ruilope LM, Pitt B, Anker SD, Rossing P, Kovesdy CP, Pecoits-Filho R et al (2023) Kidney outcomes with finerenone: an analysis from the FIGARO-DKD study. Nephrol Dial Transplant 38(2):372–383

    Article  CAS  PubMed  Google Scholar 

  24. Bakris GL, Ruilope LM, Anker SD, Filippatos G, Pitt B, Rossing P et al (2023) A prespecified exploratory analysis from FIDELITY examined finerenone use and kidney outcomes in patients with chronic kidney disease and type 2 diabetes. Kidney Int 103(1):196–206

    Article  CAS  PubMed  Google Scholar 

  25. Sarafidis P, Agarwal R, Pitt B, Wanner C, Filippatos G, Boletis J et al (2023) Outcomes with Finerenone in Participants with Stage 4 CKD and Type 2 Diabetes: A FIDELITY Subgroup Analysis. Clin J Am Soc Nephrol 18(5):602–612

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA et al (2016) Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 375(19):1834–1844

    Article  CAS  PubMed  Google Scholar 

  27. Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR et al (2019) Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 381(9):841–851

    Article  CAS  PubMed  Google Scholar 

  28. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41:255–323. https://doi.org/10.1093/eurheartj/ehz486

  29. Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al (2021) Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a  ystematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 9:653–62

  30. Rossing P, Bain SC, Bosch-Traberg H, Sokareva E, Heerspink HJL, Rasmussen S et al (2023) Effect of semaglutide on major adverse cardiovascular events by baseline kidney parameters in participants with type 2 diabetes and at high risk of cardiovascular disease: SUSTAIN 6 and PIONEER 6 post hoc pooled analysis. Cardiovasc Diabetol 22(1):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuttle KR, Bosch-Traberg H, Cherney DZI, Hadjadj S, Lawson J, Mosenzon O et al (2023) Post hoc analysis of SUSTAIN 6 and PIONEER 6 trials suggests that people with type 2 diabetes at high cardiovascular risk treated with semaglutide experience more stable kidney function compared with placebo. Kidney Int 103(4):772–781

    Article  PubMed  Google Scholar 

  32. Lin Y, Wang T‑H, Tsai M‑L, Wu VC‑C, Tseng C‑J, Lin M‑S et al (2023) The cardiovascular and renal effects of glucagon-like peptide 1 receptor agonists in patients with advanced diabetic kidney disease. Cardiovasc Diabetol 22(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng Z‑Y, Yang C‑T, Lin W‑H, Yao W‑Y, Ou H‑T, Kuo S (2023) Chronic kidney outcomes associated with GLP‑1 receptor agonists versus long-acting insulins among type 2 diabetes patients requiring intensive glycemic control: a nationwide cohort study. Cardiovasc Diabetol 22(1):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heerspink HJL, Sattar N, Pavo I, Haupt A, Duffin KL, Yang Z et al (2022) Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol 10(11):774–785

    Article  CAS  PubMed  Google Scholar 

  35. Heerspink HJL, Parving H‑H, Andress DL, Bakris G, Correa-Rotter R, Hou F‑F et al (2019) Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393(10184):1937–1947

    Article  CAS  PubMed  Google Scholar 

  36. Heerspink HJL, Kiyosue A, Wheeler DC, Lin M, Wijkmark E, Carlson G et al (2023) Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402(10416):2004–2017

    Article  CAS  PubMed  Google Scholar 

  37. Chinnadurai R, Rengarajan S, Budden JJ, Quinn CM, Kalra PA (2023) Maintaining Renin-Angiotensin-Aldosterone System Inhibitor Treatment with Patiromer in Hyperkalaemic Chronic Kidney Disease Patients: Comparison of a Propensity-Matched Real-World Population with AMETHYST-DN. Am J Nephrol 54(9–10):408–415

    Article  CAS  PubMed  Google Scholar 

  38. Tuttle KR, Hauske SJ, Canziani ME, Caramori ML, Cherney D, Cronin L et al (2023) Efficacy and safety of aldosterone synthase inhibition with and without empagliflozin for chronic kidney disease: a randomised, controlled, phase 2 trial. Lancet

  39. Fioretto P, Pontremoli R (2022) Expanding the therapy options for diabetic kidney disease. Nat Rev Nephrol 18(2):78–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom H. Lindner.

Ethics declarations

Interessenkonflikt

T.H. Lindner macht folgende Angaben: Vorträge: MSD, Sanofi, Boehringer-Ingelheim, Novo Nordisk, AstraZeneca. Advisory Boards: Vifor, Boehringer-Ingelheim. Des Weiteren Firmen-gesponserte Studien und Teilnahme an verschiedenen gesponserten multizentrischen Studien. W.A. Scherbaum gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, T.H., Scherbaum, W.A. Diabetische Nephropathie 2023 – Beginn eines neuen Zeitalters. Diabetologie 20, 518–525 (2024). https://doi.org/10.1007/s11428-024-01201-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-024-01201-0

Schlüsselwörter

Keywords

Navigation