Skip to main content
Log in

Materner Metabolismus und fetale Entwicklung

Influence of maternal metabolism on fetal development

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Hintergrund

Schon intrauterin wird die menschliche Entwicklung von äußeren Faktoren beeinflusst. In dieser sensiblen Phase liegen entwicklungsbedingte Ursprünge von Gesundheit und potenziellen Erkrankungen. Ein zentraler Einflussfaktor ist der materne Metabolismus.

Umfang der Übersichtsarbeit

Im vorliegenden Beitrag sind Studien zusammengefasst und eingeordnet, in denen die Einflüsse mütterlicher Parameter mit Bezug zum Metabolismus auf die fetale Entwicklung des zentralen und des autonomen Nervensystems untersucht wurden.

Schlussfolgerung

Mütterliche Faktoren in der Schwangerschaft (Gewichtszunahme, Insulinsensitivität, Gestationsdiabetes) sowie vor dieser (BMI [Body-Mass-Index], präkonzeptioneller Diabetes) können verschiedene fetale Faktoren, wie die fetale postprandiale Hirnaktivität auf Stimulation, die spontane Hirnaktivität, die fetale Herzrate und die fetale postprandiale Herzratenvariabilität beeinflussen.

Abstract

Background

Human development is already influenced by external factors in utero. During this vulnerable period, developmental origins of health and disease emerge, with maternal metabolism playing a central role.

Scope of review

In this article, studies that examine the influence of maternal parameters related to metabolism on fetal development of the central and autonomous nervous system are summarized.

Conclusion

Maternal factors during pregnancy (weight gain, insulin sensitivity, gestational diabetes) and before pregnancy (body mass index, preconceptional diabetes) can influence a number of fetal factors, like postprandial brain activity in response to stimulation, spontaneous brain activity, fetal heart rate, and fetal postprandial heart rate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

Verwendete Literatur

  1. Avci R, Whittington JR, Blossom SJ et al (2020) Studying the effect of maternal pregestational diabetes on fetal neurodevelopment using magnetoencephalography. Clin EEG Neurosci. https://doi.org/10.1177/1550059420909658

    Article  PubMed  PubMed Central  Google Scholar 

  2. Castro Conde JR, González González NL, González Barrios D et al (2013) Video-EEG recordings in full-term neonates of diabetic mothers: observational study. Arch Dis Child Fetal Neonatal Ed 98:F493–F498. https://doi.org/10.1136/archdischild-2013-304283

    Article  PubMed  Google Scholar 

  3. David M, Hirsch M, Karin J et al (2007) An estimate of fetal autonomic state by time frequency analysis of fetal heart rate variability. J Appl Physiol 102:1057–1064. https://doi.org/10.1152/japplphysiol.00114.2006

    Article  PubMed  Google Scholar 

  4. Fehlert E, Willmann K, Fritsche L et al (2016) Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: a fetal magnetocardiography study. BJOG 124:1891–1898. https://doi.org/10.1111/1471-0528.14474

    Article  CAS  PubMed  Google Scholar 

  5. Gluckman PD, Hanson MA (2006) The developmental origins of health and disease. In: Wintour EM, Owens JA (Hrsg) Early life origins of health and disease. Advances in experimental medicine and biology, Bd. 573. Springer, Boston https://doi.org/10.1007/0-387-32632-4_1

    Chapter  Google Scholar 

  6. Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Public Health Nutr 4:611–624. https://doi.org/10.1079/phn2001145

    Article  CAS  PubMed  Google Scholar 

  7. Godfrey KM, Reynolds RM, Prescott SL et al (2017) Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 5:53–64. https://doi.org/10.1016/S2213-8587(16)30107-3

    Article  PubMed  Google Scholar 

  8. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP et al (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358:1991–2002. https://doi.org/10.1056/NEJMoa0707943

    Article  Google Scholar 

  9. Heni M, Kullmann S, Preissl H et al (2015) Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 11:701–711. https://doi.org/10.1038/nrendo.2015.173

    Article  CAS  PubMed  Google Scholar 

  10. Kiefer ID, Siegel ER, Preissl H et al (2008) Delayed maturation of auditory evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol 199:503.e1–503.e7. https://doi.org/10.1016/j.ajog.2008.04.014

    Article  Google Scholar 

  11. Lain KY, Catalano PM (2007) Metabolic changes in pregnancy. Clin Obstet Gynecol 50:938–948. https://doi.org/10.1097/GRF.0b013e31815a5494

    Article  PubMed  Google Scholar 

  12. Li X, Andres A, Shankar K et al (2016) Differences in brain functional connectivity at resting state in neonates born to healthy obese or normal-weight mothers. Int J Obes 40:1931–1934. https://doi.org/10.1038/ijo.2016.166

    Article  CAS  Google Scholar 

  13. Linder K, Schleger F, Ketterer C et al (2014) Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity. Diabetologia 57:1192–1198. https://doi.org/10.1007/s00125-014-3217-9

    Article  CAS  PubMed  Google Scholar 

  14. Linder K, Schleger F, Kiefer-Schmidt I et al (2015) Gestational diabetes impairs human fetal postprandial brain activity [published correction appears in J Clin Endocrinol Metab 2017,102:336]. J Clin Endocrinol Metab 100:4029–4036. https://doi.org/10.1210/jc.2015-2692

    Article  CAS  PubMed  Google Scholar 

  15. Mat Husin H, Schleger F, Bauer I et al (2020) Maternal weight, weight gain and metabolism are associated with changes in fetal heart rate and variability. Obesity 28:114–121. https://doi.org/10.1002/oby.22664

    Article  CAS  PubMed  Google Scholar 

  16. Melchior H, Kurch-Bek D, Mund M (2017) The prevalence of gestational diabetes. Dtsch Arztebl Int 114:412–418. https://doi.org/10.3238/arztebl.2017.0412

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mensink GB, Schienkiewitz A, Haftenberger M et al (2013) Übergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1) [Overweight and obesity in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56:786–794. https://doi.org/10.1007/s00103-012-1656-3

    Article  CAS  PubMed  Google Scholar 

  18. Nehring I, Lehmann S, von Kries R (2013) Gestational weight gain in accordance to the IOM/NRC criteria and the risk for childhood overweight: a meta-analysis. Pediatr Obes 8:218–224. https://doi.org/10.1111/j.2047-6310.2012.00110.x

    Article  CAS  PubMed  Google Scholar 

  19. Pedersen J (1967) The pregnant diabetic and her newborn: problems and management. William & Wilkins, Baltimore

    Google Scholar 

  20. Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190:28–36. https://doi.org/10.1016/j.expneurol.2004.06.016

    Article  Google Scholar 

  21. Russell NE, Higgins MF, Kinsley BF et al (2016) Heart rate variability in neonates of type 1 diabetic pregnancy. Early Hum Dev 92:51–55. https://doi.org/10.1016/j.earlhumdev.2015.11.003

    Article  PubMed  Google Scholar 

  22. Salzwedel AP, Gao W, Andres A et al (2019) Maternal adiposity influences neonatal brain functional connectivity. Front Hum Neurosci 12:514. https://doi.org/10.3389/fnhum.2018.00514

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sanchez CE, Barry C, Sabhlok A et al (2018) Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes Rev 19:464–484. https://doi.org/10.1111/obr.12643

    Article  CAS  PubMed  Google Scholar 

  24. Schäfer-Graf UM, Gembruch U, Kainer F et al (2018) Gestational Diabetes Mellitus (GDM)—Diagnosis, Treatment and Follow-Up. Guideline of the DDG and DGGG (S3 Level, AWMF Registry Number 057/008, February 2018). Geburtshilfe Frauenheilkd 78:1219–1231. https://doi.org/10.1055/a-0659-2596

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schleger F, Linder K, Walter L et al (2018) Family history of diabetes is associated with delayed fetal postprandial brain activity. Front Endocrinol 9:673. https://doi.org/10.3389/fendo.2018.00673

    Article  Google Scholar 

  26. Sobngwi E, Boudou P, Mauvais-Jarvis F et al (2003) Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361:1861–1865. https://doi.org/10.1016/S0140-6736(03)13505-2

    Article  PubMed  Google Scholar 

  27. Tamayo T, Tamayo M, Rathmann W et al (2016) Prevalence of gestational diabetes and risk of complications before and after initiation of a general systematic two-step screening strategy in Germany (2012–2014). Diabetes Res Clin Pract 115:1–8. https://doi.org/10.1016/j.diabres.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  28. Thomason M, Scheinost D, Manning J et al (2017) Weak functional connectivity in the human fetal brain prior to preterm birth. Sci Rep 7:39286. https://doi.org/10.1038/srep39286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Truong YN, Yee LM, Caughey AB et al (2015) Weight gain in pregnancy: does the Institute of Medicine have it right? Am J Obstet Gynecol 212:362.e361–362.e368. https://doi.org/10.1016/j.ajog.2015.01.027

    Article  Google Scholar 

  30. Wakai RT (2004) Assessment of fetal neurodevelopment via fetal magnetocardiography. Exp Neurol 190:S65–S71. https://doi.org/10.1016/j.expneurol.2004.04.019

    Article  PubMed  Google Scholar 

  31. Young JB (2006) Developmental origins of obesity: a sympathoadrenal perspective. Int J Obes 30:S41–S49. https://doi.org/10.1038/sj.ijo.0803518

    Article  Google Scholar 

  32. http://www.euro.who.int/en/health-topics/noncommunicable-diseases/diabetes/data-and-statistics Zugegriffen: 07.Juni.2020

Weiterführende Literatur

  1. Fritsche L, Hummel J, Heni M (2019) Langzeitfolgen und Präventionsstrategien für Frauen nach Gestationsdiabetes. Diabetologe 15:717–728. https://doi.org/10.1007/s11428-019-00544-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Schleger.

Ethics declarations

Interessenkonflikt

F. Schleger, L. Fritsche, A. Birkenfeld, M. Heni, H. Preissl und A. Fritsche geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleger, F., Fritsche, L., Birkenfeld, A. et al. Materner Metabolismus und fetale Entwicklung. Diabetologe 16, 647–653 (2020). https://doi.org/10.1007/s11428-020-00667-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-020-00667-y

Schlüsselwörter

Keywords

Navigation