Skip to main content
Log in

Typ-2-Diabetes – Update 2018

Type 2 diabetes—update 2018

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Die wichtigsten neuen Erkenntnisse zur Diagnostik und Therapie des Typ-2-Diabetes (T2D) werden vorgestellt. Bei Patienten, die sich erstmals mit dem Bild eines T2D präsentieren, können die Prognose und damit die erforderliche Behandlungsintensität durch verschiedene Biomarker abgeschätzt werden. Auch die Wahrscheinlichkeit für das Vorliegen eines MODY („maturity onset diabetes of the young“) lässt sich in einem 3‑stufigen Verfahren mittels Biomarkern beurteilen. In Endpunktstudien wurden kardio- und renoprotektive Effekte für die Behandlung mit den GLP-1-Rezeptor-Agonisten (GLP-1-RA [GLP-1: „glucagon-like peptide 1“]) Liraglutid und Semaglutid bzw. den SGLT-2-Inhibitoren (SGLT-2: „sodium dependent glucose transporter 2“) Empagliflozin und Canagliflozin belegt. Neue positiv evaluierte therapeutische Optionen beimT2D betreffen u. a. die Dreifachbehandlung mit den oral zu verabreichenden Antidiabetika Metformin, DPP-4-Inhibitoren (DPP: Dipeptidylpeptidase) und SGLT-2-Hemmern, die additiv wirken und das Hypoglykämierisiko nicht erhöhen. Die Kombination von Basalinsulin mit einem DPP-4-Inhibitor ist zur Blutzuckereinstellung auf peripheren Krankenhausstationen genauso wirksam wie die aufwendige intensivierte Insulintherapie. Ist der T2D unter Metformin und einem DPP-4-Inhibitor schlecht eingestellt, kann der HbA1c-Wert (HbA1c: Glykohämoglobin Typ A1c) durch den GLP-1-RA Dulaglutid effektiv reduziert werden, ohne das Risiko für Hypoglykämien zu erhöhen. Bei unzureichender Blutzuckereinstellung mit Metformin mit oder ohne Sulfonylharnstoffpräparat ist eine Kombinationstherapie mit Semaglutid effektiver und sicherer als die zusätzliche Gabe von Insulin Glargin.

Abstract

The most important advances in the diagnosis and therapy of type 2 diabetes (T2D) are presented. In patients who first present with the clinical picture of T2D, the prognosis and thus the required intensity of therapy can be estimated on the basis of biomarkers. Biomarkers also allow the evaluation of the probability of MODY (maturity onset diabetes of the young) in a 3-step procedure. In outcome trials, cardio- and renoprotective efficiency was shown for treatment with the GLP1-receptor agonists (GLP1‑RA [GLP‑1: glucagon-like peptide 1]) liraglutide and semaglutide as well as with the SGLT2 (sodium dependent glucose transporter 2) inhibitors empagliflozin and canagliflozin. New positively evaluated options in the treatment of T2D include, among others, triple therapy with the oral antidiabetic drugs metformin, DPP4 inhibitors (DPP: dipeptidylpeptidase) and SGLT2 inhibitors that exert additive effects without increasing the risk for hypoglycemic events. The combination of basal insulin with a DPP4 inhibitor is as efficient for the metabolic control in periperal hospital wards as the more complex treatment with intensive insulin therapy. If the diabetes is inadequately controlled under metformin and a DPP4 inhibitor, treatment with the GLP1-RA dulaglutide is able to effectively reduce the HbA1c (hemoglobin type A1c) value without increasing the risk for hypoglycemic events. When the diabetes is inadequately controlled under metformin with or without a sulfonylurea drug, combination with semaglutid is more effective and safer than the addition of insulin glargine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Abbreviations

ACE:

Angiotensinkonversionsenzym

ADA:

American Diabetes Association

AT1 :

Angiotensin-II-Rezeptor-Subtyp-1-Antagonist

BMI:

Body-Mass-Index

BOT:

Durch Basalinsulin unterstützte orale Therapie

CKD:

Chronische Nierenerkrankung („chronic kidney disease“)

DDG:

Deutsche Diabetes Gesellschaft

DM:

Diabetes mellitus

DPP-4:

Dipeptidylpeptidase 4

eGFR:

errechnete (geschätzte) GFR

ER:

mit verlängerter Freisetzung („Extended release“)

GAD:

Glutamatdekarboxylase

G-BA:

Gemeinsamer Bundesausschuss

GFR:

Glomeruläre Filtrationsrate

GKV:

Gesetzliche Krankenversicherung

GLP-1:

Glukagonähnliches Peptid 1 („glucagon-like peptide 1“)

GLP-1-RA:

GLP-1-Rezeptor-Agonist

HbA1c :

Glykohämoglobin Typ A1c

HNF1:

Homöobox A

HOMA:

Homöostasemodell zur Einschätzung von Befunden („homeostasis model assessment“)

HOMA2:

Verbessertes HOMA-Computermodell

HOMA2-B :

HOMA 2 für Betazellfunktion

HOMA2-IR :

HOMA 2 für Insulinresistenz

IA-2:

Tyrosinphosphatase

ICT :

Intensivierte konventionelle Insulintherapie

LADA :

Autoimmundiabetes mit spätem Beginn („late onset autoimmune diabetes“)

MACE:

Schwere kardiovaskuläre Ereignisse („major adverse cardiovascular events“)

MARD :

Leichter Diabetes mit Beginn im mittleren Lebensalter („mild age-related diabetes“)

MOD :

Leichter Diabetes verbunden mit Fettsucht („mild obesity-related diabetes“)

MODY:

Monogene Diabetesform („maturity-onset diabetes of the young“)

pAVK:

Periphere arterielle Verschlusskrankheit

RCT:

Randomisierte klinische Studie

SAID :

Schwerer Autoimmundiabetes („severe autoimmune diabetes“)

SGLT:

Natriumabhängiger Glukosetransporter („sodium dependent glucose transporter“)

SHS:

Sulfonylharnstoffe

SIDD :

Schwerer Insukinmangeldiabetes („severe insulin-deficient diabetes“)

SIRD :

Schwerer Diabetes aufgrund einer Insulinresistenz („severe insulin-resistant diabetes“)

T2D:

Typ-2-Diabetes

UCPCR:

Verhältnis von C‑Peptid zu Kreatinin im Urin („urine C‑peptide creatinine ratio“)

Literatur

  1. Genut S, Alberti KG, Bennett P et al (2003) Expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167

    Article  Google Scholar 

  2. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl. 1):S81–S90

    Article  Google Scholar 

  3. American Diabetes Association (2018) Standards of medical care in diabetes—2018. Diabetes Care 41(Suppl. 1)

  4. Ahlqvist E, Storm P, Käräjämäki A et al (2018) Clustering of adult-onset diabetes into novel subgroups guides therapy and improves 5. prediction of outcome. Lancet Diabetes Endocrinol 6(5):361–369

    Article  PubMed  Google Scholar 

  5. Hattersley AT, Patel KA (2017) Precision diabetes: learning from monogenic diabetes. Diabetologia 60:769–777

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shields BM, Shepherd M, Hudson M et al (2017) Population-based assessment of a biomarker-based screening pathway to aid diagnosis of monogenic diabetes in young-onset patients. Diabetes Care 40:1017–1025

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shields BM, McDonald TJ, Ellard S et al (2012) The development and validation of a clinical prediction modelt o determine the probability of MOFY in patients with younbg-onset diabetes. Diabetologia 55:1265–1272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rawshani A, Rawshani A, Franzén S et al (2017) Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 376:1407–1418

    Article  PubMed  Google Scholar 

  9. https://www.bfarm.de/..../Pharmakovigilanz/DE/RV_STP/m-r/metformin.html

  10. Svensson E, Baggesen LM, Johnsen SP et al (2017) Early glycemic control and magnitude of HbA1c reduction predict cardiovascular events and mortality: population-based cohort study of 24.752 metformin initiators. Diabetes Care 40:800–807

    Article  PubMed  Google Scholar 

  11. Freichel M, Mengel K (2017) Antidiabetika. In: Schwabe U et al (Hrsg) Arzneiverordnungs-Report 2017. Springer, Berlin, S 299–315

    Chapter  Google Scholar 

  12. Azoulay L, Suissa S (2017) Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational data. Diabetes Care 40:706–714

    Article  PubMed  CAS  Google Scholar 

  13. Rados V, Pinto L, Reck Remonti L et al (2016) The association between sulfonylurea use and all-cause and cardiocascular mortality: a meta-analyis with trial sequential analysis of randomized clinical trials. PLos Med. https://doi.org/10.1371/journal.pmed.1001992

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bain S, Druyts E, Balijepalli C et al (2017) Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycemic drugs: a Bayesian meta-analysis of survival data. Diabetes Obes Metab 19:329–335

    Article  PubMed  CAS  Google Scholar 

  15. Marx N, Rosenstock J, Kahn SE et al (2015) Design and baseline characteristics of the CARdiovascular Outcome trial of LINAgliptin versus glimepiride in type 2 diabetes (CAROLINA®). Diab Vasc Dis Res 12(3):164–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Palmer SC, Mavridis D, Nicolucci A et al (2016) Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA 316:313–324

    Article  PubMed  CAS  Google Scholar 

  17. van Dalem J, Brouwers MC, Stehouwer CD et al (2016) Risk of hypoglycemia in users of sulphonylureas compared with metformin in relation to renal function and sulphonylurea metabolite group: population based cohort study. BMJ 354:i3625

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 369:1317–1326

    Article  PubMed  CAS  Google Scholar 

  19. White WB, Cannon CP, Heller SR et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335

    Article  PubMed  CAS  Google Scholar 

  20. Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242

    Article  PubMed  CAS  Google Scholar 

  21. Tkac I, Raz I (2017) Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 40:284–286

    Article  PubMed  CAS  Google Scholar 

  22. Hong J‑L, Buse JB, Funk MJ et al (2018) The risk of cute pancreatitis after initiation of dipeptidyl peptidase 4 inhibitors: testing a hypothesis of subgroup differences in older U.S. adults. Diabetes Care. https://doi.org/10.2337/dc17-2212

    Article  PubMed  Google Scholar 

  23. Pasquel FJ, Gianchandani R, Rubin DJ et al (2017) Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol 5:125–133

    Article  PubMed  CAS  Google Scholar 

  24. Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844

    Article  PubMed  CAS  Google Scholar 

  26. Mann JFE, Orsted DD, Brown-Frandsen K et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377:839–848

    Article  PubMed  CAS  Google Scholar 

  27. Holman RR, Bethel MA, Mentz RJ et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377:1228–1239

    Article  PubMed  CAS  Google Scholar 

  28. Ahmann AJ, Capehorn M, Charpentier G et al (2018) Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial. Diabetes Care 41:258–266

    Article  PubMed  Google Scholar 

  29. Davies M, Pieber TR, Hartoft-Nielsen ML et al (2017) Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes. JAMA 318:1460–1470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  PubMed  CAS  Google Scholar 

  31. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657

    Article  PubMed  CAS  Google Scholar 

  32. Inzucchi SE, Iliev H, Pfarr E et al (2018) Empagliflozin and assessment of lower-limb amputations in the EMPA-REG-OUTCOME trial. Diabetes Care 41:e4–e5

    Article  PubMed  Google Scholar 

  33. Marso SP, McGuire DK, Zinman B et al (2017) Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377:723–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zinman B, Marso SP, Poulter NR et al (2018) Day-to-day fasting glycaemic variability in DEVOTE: associations with severe hypoglycemia and cardiovascular outcomes (DEVOTE 2). Diabetologia 61:48–57

    Article  PubMed  Google Scholar 

  35. Pieber TR, Marso SP, McGuire DK et al (2018) DEVOTE 3: temporal relationships between severe hypoglycemia, cardiovascular outcomes and mortality. Diabetologia 61:58–65

    Article  PubMed  Google Scholar 

  36. Bowering K, Case C, Harvey J et al (2017) Faster aspart versus insulin aspart as part of a basal-bolus regimen in inadequately controlled type 2 diabetes: the onset 2 trial. Diabetes Care 40:951–957

    Article  PubMed  Google Scholar 

  37. Frias JP, Guja C, Hardy E et al (2016) Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 4(12):1004–1016

    Article  PubMed  CAS  Google Scholar 

  38. Bajaj HS, Venn K, Ye C et al (2017) Lowest glucose variability and hypoglycemia are observed with the combination of a GLP-1 receptor agonist and basal insulin (VARIATION study). Diabetes Care 40:194–200

    Article  PubMed  CAS  Google Scholar 

  39. Maiorino MI, Chiodini P, Bellastella G et al (2017) Insulin and glucagon-like peptide 1 receptor agonist combination therapy in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trialls. Diabetes Care 40:614–624

    Article  PubMed  Google Scholar 

  40. Aroda VR, Bain SC, Cariou B et al (2017) Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol 5:355–366

    Article  PubMed  CAS  Google Scholar 

  41. Søfteland E, Meier JJ, Vangen B et al (2017) Empagliflozin as add-on therapy in patients with type 2 diabetes inaedequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care 40:201–209

    Article  PubMed  CAS  Google Scholar 

  42. Ludvik B, Frias JP, Tinahones FJ et al (2018) Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): 1 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(18)30023-8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner A. Scherbaum.

Ethics declarations

Interessenkonflikt

W.A. Scherbaum gibt an, dass er Beratungshonorare von den Firmen Boehringer Ingelheim und Lilly erhalten hat. A. Hamann weist auf folgende Beziehungen hin: Berater- und Referentenhonorare von AstraZeneca, Amgen, Cheplapharm, Boehringer Ingelheim, MSD, Lilly, Novo Nordisk, Sanofi-Aventis.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherbaum, W.A., Hamann, A. Typ-2-Diabetes – Update 2018. Diabetologe 14, 294–308 (2018). https://doi.org/10.1007/s11428-018-0356-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-018-0356-5

Schlüsselwörter

Keywords

Navigation