Skip to main content
Log in

Regulation des Mikrobioms über Ernährungseinflüsse

Regulation of the microbiome by diet

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Hintergrund

Die Art der Ernährung bestimmt die Zusammensetzung der intestinalen Mikrobiota sowie das Spektrum und die Menge der im Kolon gebildeten kurzkettigen Fettsäuren.

Kurzkettige Fettsäuren

Neben ihrer Rolle als Energielieferanten fungieren sie als Bausteine und üben regulatorische Funktionen im Wirtsorganismus aus. So dienen Azetat für die Lipogenese und Propionat für die Glukoneogenese als Baustein. Kurzkettige Fettsäuren fungieren aber auch als Liganden von Rezeptoren, die an der Regulation des Energiestoffwechsels des Wirtsorganismus beteiligt sind.

Mikrobiom und Adipositas

Adipositas lässt sich durch Transplantation der intestinalen Mikrobiota adipöser Menschen oder übergewichtiger Mäuse auf keimfreie Mäuse übertragen. Es gibt erste Hinweise auf intestinale Bakterien, welche Adipositas und metabolische Erkrankungen fördern, während andere Darmbakterien sie eher verhindern. Die dem zugrunde liegenden Mechanismen sind weitgehend unverstanden.

Abstract

Background

Nutrition affects the composition of the intestinal microbiota and the spectrum and the amount of short-chain fatty acids produced in the colon.

Short-chain fatty acids

Besides their role as an energy source, short-chain fatty acids have regulatory functions in the host. Thus, acetate serves as a building block in lipogenesis and propionate in gluconeogenesis. However, short-chain fatty acids they are also ligands of receptors that may play a role in the regulation of host energy metabolism.

The microbiome and obesity

Obesity can be transferred to germfree mice by transplanting the intestinal microbiota from obese humans or rodents. There are some hints that certain members of the intestinal microbiota promote obesity and metabolic disease while others do the opposite. The underlying mechanisms are largely unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  PubMed Central  Google Scholar 

  2. Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418:650–654

    Article  CAS  PubMed  Google Scholar 

  3. Blaut M, Klaus S (2012) Intestinal microbiota and obesity. Handb Exp Pharmacol. doi:10.1007/978-3-642-24716-3_11

    PubMed  Google Scholar 

  4. Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  5. Cani PD, Knauf C, Iglesias MA et al (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55:1484–1490

    Article  CAS  PubMed  Google Scholar 

  6. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  7. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15:1546–1558

    Article  CAS  PubMed  Google Scholar 

  8. Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383

    Article  CAS  PubMed  Google Scholar 

  9. Chambers ES, Viardot A, Psichas A et al (2014) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. doi:10.1136/gutjnl-2014-307913

    PubMed  PubMed Central  Google Scholar 

  10. Collado MC, Isolauri E, Laitinen K et al (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88:894–899

    CAS  PubMed  Google Scholar 

  11. Croset M, Rajas F, Zitoun C et al (2001) Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50:740–746

    Article  CAS  PubMed  Google Scholar 

  12. Dao MC, Everard A, Aron-Wisnewsky J et al (2015) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. doi:10.1136/gutjnl-2014-308778

    Google Scholar 

  13. De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    Article  PubMed  Google Scholar 

  14. Delaere F, Duchampt A, Mounien L et al (2012) The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2:47–53

    Article  PubMed  PubMed Central  Google Scholar 

  15. Erridge C, Attina T, Spickett CM et al (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292

    CAS  PubMed  Google Scholar 

  16. Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7:880–884

    Article  CAS  PubMed  Google Scholar 

  17. Fleissner CK, Huebel N, Abd El-Bary MM et al (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104:919–929

    Article  CAS  PubMed  Google Scholar 

  18. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  19. Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalliomaki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538

    CAS  PubMed  Google Scholar 

  23. Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    Article  CAS  PubMed  Google Scholar 

  24. Kless C, Muller VM, Schuppel VL et al (2015) Diet-induced obesity causes metabolic impairment independent of alterations in gut barrier integrity. Mol Nutr Food Res 59:968–978

    Article  CAS  PubMed  Google Scholar 

  25. Lazarova DL, Chiaro C, Wong T et al (2013) CBP activity mediates effects of the Histone Deacetylase inhibitor Butyrate on WNT activity and Apoptosis in colon cancer cells. J Cancer 4:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  PubMed  Google Scholar 

  27. Ley RE, Turnbaugh PJ, Klein S et al (2006) Human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  28. Lin HC, Neevel C, Chen JH (2004) Slowing intestinal transit by PYY depends on serotonergic and opioid pathways. Am J Physiol Gastrointest Liver Physiol 286:G558–G563

    Article  CAS  PubMed  Google Scholar 

  29. Lin HV, Frassetto A, Kowalik EJ Jr. et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3‑independent mechanisms. PLoS ONE 7:e35240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  PubMed  Google Scholar 

  31. Psaltopoulou T, Ilias I, Alevizaki M (2010) The role of diet and lifestyle in primary, secondary, and tertiary diabetes prevention: a review of meta-analyses. Rev Diabet Stud 7:26–35

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  Google Scholar 

  33. Samuel BS, Shaito A, Motoike T et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwiertz A, Taras D, Schafer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18:190–195

    Article  Google Scholar 

  35. Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735

    Article  CAS  PubMed  Google Scholar 

  36. Sonnenburg ED, Smits SA, Tikhonov M et al (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  38. Tazoe H, Otomo Y, Kaji I et al (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262

    PubMed  Google Scholar 

  39. Teixeira TF, Grzeskowiak L, Franceschini SC et al (2013) Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br J Nutr 109:914–919

    Article  CAS  PubMed  Google Scholar 

  40. Tolhurst G, Heffron H, Lam YS et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G‑protein-coupled receptor FFAR2. Diabetes 61:364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  42. Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Article  PubMed  PubMed Central  Google Scholar 

  44. Turton MD, O’shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72

    Article  CAS  PubMed  Google Scholar 

  45. Woting A, Pfeiffer N, Loh G et al (2014) Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. MBio 5:e01530–e01514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woting A, Pfeiffer N, Hanske L et al (2015) Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol Nutr Food Res. doi:10.1002/mnfr.201500249

    PubMed  Google Scholar 

  47. Wu X, Ma C, Han L et al (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78

    Article  CAS  PubMed  Google Scholar 

  48. Xiong Y, Miyamoto N, Shibata K et al (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Blaut.

Ethics declarations

Interessenkonflikt

M. Blaut gibt an, dass kein Interessenkonflikt besteht.

Alle in dieser Arbeit zitierten Arbeiten des Autors wurden unter Einhaltung ethischer Normen durchgeführt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaut, M. Regulation des Mikrobioms über Ernährungseinflüsse. Diabetologe 12, 394–400 (2016). https://doi.org/10.1007/s11428-016-0130-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-016-0130-5

Schlüsselwörter

Keywords

Navigation