Advertisement

Der Diabetologe

, Volume 11, Issue 4, pp 331–345 | Cite as

Body-Mass-Index

  • A. Bohlen
  • M. Boll
  • M. Schwarzer
  • D.A. GronebergEmail author
CME Zertifizierte Fortbildung

Zusammenfassung

Der Body-Mass-Index (BMI) ist einer der am häufigsten verwendeten Indizes in der Medizin. Erste Bestrebungen zur Bewertung von Gesundheitsrisiken anhand des Körpergewichts gab es bereits Anfang des 19. Jahrhunderts. Im Lauf der Zeit etablierte sich die 1835 von A. Quételet erstmals beschriebene Formel „Größe durch Gewicht im Quadrat“ zur Beurteilung des Ernährungszustands und zur Einschätzung individueller Krankheitsrisiken. A. Keys bezeichnete sie Anfang der 1970er Jahre als Body-Mass-Index. Aus dem BMI lässt sich zum einen die individuelle Ernährungslage des Einzelnen zur Beurteilung der entsprechenden Risikofaktoren bestimmen. Zum anderen kann auch der Ernährungsstatus in größeren Gruppen, Ländern und Kontinenten festgestellt und über die Zeit beobachtet werden. Obwohl mit dem BMI sowohl Über- als auch Unterernährung erfasst werden kann, liegt die Konzentration der Publikationen in Ländern, in denen die Adipositas mit ihren weitreichenden Folgen weiter verbreitet ist als Mangelernährung. Auch die Weltgesundheitsbehörde akzentuiert dieses Übergewicht. Bereits 1997 wurde die Notwendigkeit erkannt, international vergleichbare repräsentative Daten zu erheben, um der allgemeinen Entwicklung der Adipositas frühzeitig entgegenwirken zu können. Mittlerweile liegen zahlreiche Studien zur Ernährungslage in einzelnen Ländern vor, die mithilfe des BMI generiert wurden.

Schlüsselwörter

Fettgewebe Risikofaktoren Ernährungszustand Anthropometrie Indikatoren des Gesundheitszustands 

Body mass index

Abstract

The body mass index (BMI) is one of the most frequently used indices in medicine. From the beginning of the nineteenth century, detailed attention is given to the risk of overweight. Over the years the ratio of weight in kilograms divided by the square of the height in meters became one of the leading weight/height indices. It was first described by A. Quételet in 1835 and termed the “body mass index” by A. Keys in 1972. The BMI can be used to assess the nutritional status of an individual in order to evaluate relevant risk factors. It can also be used to determine the average weight of nations or continents. Although both over- and underweight can be measured by the BMI, the problem of overweight has led to more publications than underweight. Even the World Health Organization clearly focuses on obesity as a global epidemic and a worldwide public health crisis. In 1997, the collection of data was initiated to counter this development. In the meantime, with the help of the BMI, many studies have been published on the nutritional status in different countries.

Keywords

Adipose tissue Risk factors Nutritional status Anthropometry Health status indicators 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Bohlen, M. Boll, M. Schwarzer und D.A. Groneberg geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Quételet A (Hrsg) (1842) A Treatise on man and the development of his faculties. W. and R. Chambers, EdinburghGoogle Scholar
  2. 2.
    Eknoyan G (2008) Adolphe Quételet (1796–1874) – the average man and indices of obesity. Nephrol Dial Transplant 23:47–51PubMedCrossRefGoogle Scholar
  3. 3.
    Lazarsfeld P (1961) Notes on the history of quantification in sociology: trends, sources and problems. Isis 52:277–333CrossRefGoogle Scholar
  4. 4.
    Betz G (2005) Der „HOMME MOYEN“ – Idee von gestern oder Phänomen der Gegenwart? Bochum, S 2Google Scholar
  5. 5.
    Knibbs GH (1929) The international classification of disease and causes of death and its revision. Med J Aust 1:2–12Google Scholar
  6. 6.
    Engel E (2002) Internationaler Statistischer Congress in Berlin. In: Wirtschaft und Statistik. Statistisches Bundesamt, S 144–145Google Scholar
  7. 7.
    Billewicz WZ, Thomson AM, Kemsley WFF (1962) Indices of adiposity. Br J Prev Soc Med 16:183–188PubMedCentralPubMedGoogle Scholar
  8. 8.
    Criqui MH, Klauber MR, Barrettconnor E et al (1982) Adjustment for obesity in studies of cardiovascular-disease. Am J Epidemiol 116:685–691PubMedGoogle Scholar
  9. 9.
    Mei Z, Grummer-Strawn LM, Pietrobelli A et al (2002) Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr 75:978–985PubMedGoogle Scholar
  10. 10.
    Andres R, Elahi D, Tobin JD et al (1985) Impact of age on weight goals. Ann Intern Med 103:1030–1033PubMedCrossRefGoogle Scholar
  11. 11.
    Sinha A, Kling S (2009) A review of adolescent obesity: prevalence, etiology, and treatment. Obes Surg 19:113–120PubMedCrossRefGoogle Scholar
  12. 12.
    Flegal KM, Harlan WR, Landis JR (1988) Secular trends in body mass index and skinfold thickness with socioeconomic factors in young adult men. Am J Clin Nutr 48:544–551PubMedGoogle Scholar
  13. 13.
    Wardle J, Waller J, Jarvis MJ (2002) Sex differences in the association of socioeconomic status with obesity. Am J Public Health 92:1299–1304PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ball K, Mishra GD, Crawford D (2003) Social factors and obesity: an investigation of the role of health behaviours. Int J Obes 27:394–403CrossRefGoogle Scholar
  15. 15.
    Sobal J, Stunkard AJ (1989) Socioeconomic status and obesity: a review of the literature. Psychol Bull 105:260–275PubMedCrossRefGoogle Scholar
  16. 16.
    Freedman DS, Williamson DF, Croft JB et al (1995) Relation of body-fat distribution to ischemic-heart-disease – the national-health and nutrition examination survey-I (NHANES-I) epidemiologic follow-up-study. Am J Epidemiol 142:53–63PubMedGoogle Scholar
  17. 17.
    Gartside PS, Wang P, Glueck CJ (1997) Prospective assessment of coronary heart disease risk factors: the NHANES I epidemiologic follow-up study (NHEFS) 16-year follow-up. In: Biomedicine 97 Meeting. Amer Coll Nutrition, Washington, D.C., S 263–269Google Scholar
  18. 18.
    Sundquist J, Winkleby MA, Pudaric S (2001) Cardiovascular disease risk factors among older black, Mexican-American, and white women and men: an analysis of NHANES III, 1988–1994. J Am Geriatr Soc 49:109–116PubMedCrossRefGoogle Scholar
  19. 19.
    Kannel WB, Cupples LA, Ramaswami R et al (1991) Regional obesity and risk of cardiovascular-disease; the Framingham-Study. J Clin Epidemiol 44:183–190PubMedCrossRefGoogle Scholar
  20. 20.
    Lamon-Fava S, Wilson PWF, Schaefer EJ (1996) Impact of body mass index on coronary heart disease risk factors in men and women – the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 16:1509–1515PubMedCrossRefGoogle Scholar
  21. 21.
    Mora S, Yanek LR, Moy TF et al (2005) Interaction of body mass index and Framingham Risk Score in predicting incident coronary disease in families. Circulation 111:1871–1876PubMedCrossRefGoogle Scholar
  22. 22.
    Kurth T, Gaziano JM, Berger K et al (2002) Body mass index and the risk of stroke in men. Arch Intern Med 162:2557–2562PubMedCrossRefGoogle Scholar
  23. 23.
    Stampfer MJ, Maclure KM, Colditz GA et al (1992) Risk of symptomatic gallstones in women with severe obesity. Am J Clin Nutr 55:652–658PubMedGoogle Scholar
  24. 24.
    Yamane T, Date T, Tokuda M et al (2008) Hypoxemia in inferior pulmonary veins in supine position is dependent on obesity. Am J Respir Crit Care Med 178:295–299PubMedCrossRefGoogle Scholar
  25. 25.
    Resta O, Foschino-Barbaro MP, Legari G et al (2001) Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes 25:669–675CrossRefGoogle Scholar
  26. 26.
    Calle EE, Thun MJ, Petrelli JM et al (1999) Body-mass index and mortality in a prospective cohort of US adults. N Engl J Med 341:1097–1105PubMedCrossRefGoogle Scholar
  27. 27.
    Simon GE, Von Korff M, Saunders K et al (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63:824–830PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Aronne LJ (2000) Epidemiology, morbidity, and treatment of overweight and obesity. In: Symposium on Effects of Drugs on Body Weight and Glucose Regulation. Physicians Postgraduate Press, New York, S 13–22Google Scholar
  29. 29.
    Janssen I, Mark AE (2006) Separate and combined influence of body mass index and waist circumference on arthritis and knee osteoarthritis. Int J Obes 30:1223–1228CrossRefGoogle Scholar
  30. 30.
    Peeters A, Barendregt JJ, Willekens F et al (2003) Obesity in adulthood and its consequences for, life expectancy: a life-table analysis. Ann Intern Med 138:24–32PubMedCrossRefGoogle Scholar
  31. 31.
    Coakley EH, Kawachi I, Manson JE et al (1998) Lower levels of physical functioning are associated with higher body weight among middle-aged and older women. Int J Obes 22:958–965CrossRefGoogle Scholar
  32. 32.
    Farrell SW, Cortese GM, Lamonte MJ et al (2007) Cardiorespiratory fitness, different measures of adiposity, and cancer mortality in men. Obesity 15:3140−3149PubMedCrossRefGoogle Scholar
  33. 33.
    WHO (1998) WHO Report Obesity: preventing and managing the global epidemic. In: Orangization WH (Hrsg). Geneva. http://whqlibdoc.who.int/hq/1998/WHO_NUT_NCD_98.1_%28p1-158%29.pdf. Zugegriffen: 26. Okt. 2014Google Scholar
  34. 34.
    Benecke A, Vogel H (2003) Übergewicht und Adipositas. In: Bundesamt S (Hrsg) Themenhefte. Statistisches Bundesamt, Robert Koch Institut, BerlinGoogle Scholar
  35. 35.
    WHO (2006) Obesity and overweight. In: Fact sheet. WHO. http://www.mclveganway.org.uk/publications/who_obesity_and_overweight.pdf. Zugegriffen: 26. Okt. 2014Google Scholar
  36. 36.
    Popkin BM, Doak CM (1998) The obesity epidemic is a worldwide phenomenon. Nutr Rev 56:106–114PubMedCrossRefGoogle Scholar
  37. 37.
    Monteiro CA, Conde WL, Popkin BM (2007) Income-specific trends in obesity in Brazil: 1975–2003. Am J Public Health 97:1808–1812PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ford ES, Mokdad AH (2008) Epidemiology of obesity in the western hemisphere. J Clin Endocrinol Metab 93:S1–S8PubMedCrossRefGoogle Scholar
  39. 39.
    United Nations (2000) The state of food insecurity: when people live with hunger and fear starvation. In: Food and Agriculture Organization of the United Nations, Rome. ftp://ftp.fao.org/docrep/fao/x8200e/x8200e00.pdf. Zugegriffen: 26. Okt. 2014Google Scholar
  40. 40.
    Fichter M (2008) Prävalenz und Inzidenz anorektischer und bulimischer Essstörungen. Springer, HeidelbergGoogle Scholar
  41. 41.
    Keski-Rahkonen A, Hoek HW, Susser ES et al (2007) Epidemiology and course of anorexia nervosa in the community. Am J Psychiatry 164:1259–1265PubMedCrossRefGoogle Scholar
  42. 42.
    o A (2011) Mikrozensus – Fragen zur Gesundheit. Körpermaße der Bevölkerung. https://http://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile. Zugegriffen: 02. Juli 2014Google Scholar
  43. 43.
    Donahue RP, Abbott RD, Bloom E et al (1987) Central obesity and coronary heart disease in men. Lancet 1:821–824PubMedCrossRefGoogle Scholar
  44. 44.
    Björntorp P (1988) The associations between obesity, adipose tissue distribution and disease. Acta Med Scand Suppl 723:121–134PubMedGoogle Scholar
  45. 45.
    Vazquez G, Duval S, Jacobs DR et al (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29:115–128PubMedCrossRefGoogle Scholar
  46. 46.
    Vague J (1956) The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculus disease. Am J Clin Nutr 4:20–34PubMedGoogle Scholar
  47. 47.
    Ode JJ, Pivarnik JM, Reeves MJ et al (2007) Body mass index as a predictor of percent fat in college athletes and nonathletes. Med Sci Sports Exerc 39:403–409PubMedCrossRefGoogle Scholar
  48. 48.
    Barnard DL, Ford J, Garnett ES et al (1969) Changes in body composition produced by prolonged total starvation and refeeding. Metabolism 18:564−569PubMedCrossRefGoogle Scholar
  49. 49.
    Sum CF, Wang KW, Choo DC et al (1994) The effect of a 5-month supervised program of physical activity on anthropometric indices, fat-free mass, and resting energy expenditure in obese male military recruits. Metabolism 43:1148–1152PubMedCrossRefGoogle Scholar
  50. 50.
    Rankinen T, Church TS, Rice T et al (2007) Cardiorespiratory fitness, BMI, and risk of hypertension: the HYPGENE study. Med Sci Sports Exerc 39:1687–1692PubMedCrossRefGoogle Scholar
  51. 51.
    Deurenberg P, Van Der Kooy K, Hulshof T et al (1989) Body mass index as a measure of body fatness in the elderly. Eur J Clin Nutr 43:231–236PubMedGoogle Scholar
  52. 52.
    Gallagher D, Visser M, Sepulveda D et al (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143:228–239PubMedCrossRefGoogle Scholar
  53. 53.
    Guo SS, Zeller C, Chumlea WC et al (1999) Aging, body composition, and lifestyle: the Fels Longitudinal study. Am J Clin Nutr 70:405–411PubMedGoogle Scholar
  54. 54.
    Forbes GB, Reina JC (1970) Adult lean body mass declines with age – some longitudinal observations. Metabolism 19:653–663PubMedCrossRefGoogle Scholar
  55. 55.
    Freedman DM, Ron E, Ballard-Barbash R et al (2006) Body mass index and all-cause mortality in a nationwide US cohort. Int J Obes 30:822–829CrossRefGoogle Scholar
  56. 56.
    Deurenberg-Yap M, Schmidt G, Van Staveren WA et al (2000) The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes Relat Metab Disord 24:1011–1017PubMedCrossRefGoogle Scholar
  57. 57.
    Kim Y, Suh YK, Choi H (2004) BMI and metabolic disorders in South Korean adults: 1998 Korea National Health and Nutrition Survey. Obes Res 12:445–453PubMedCrossRefGoogle Scholar
  58. 58.
    Deurenberg P, Yap M, Van Staveren WA (1998) Body mass index and percent body fat: a metaanalysis among different ethnic groups. Int J Obes 22:1164–1171CrossRefGoogle Scholar
  59. 59.
    Collins S, Myatt M (2000) Short-term prognosis in severe adult and adolescent malnutrition during famine – Use of a simple prognostic model based on counting clinical signs. JAMA 284:621–626PubMedCrossRefGoogle Scholar
  60. 60.
    Pschyrembel W (1990) Klinisches Wörterbuch. Walter de Gruyter, BerlinGoogle Scholar
  61. 61.
    Rossner S (2007) Paul Pierre Broca (1824–1880). Obes Rev 8:277–277PubMedCrossRefGoogle Scholar
  62. 62.
    Fisk EL (1923) Health building and life extension: a discussion of the means by which the health span, the work span and the life span of man can be extended. The Macmillan Company, New YorkGoogle Scholar
  63. 63.
    Dublin LI, Lotka AJ (1939) Twenty-five years of health progress. Biometrika 30:469–470Google Scholar
  64. 64.
    Livi R (1897) L’indice ponderale o rapporto tra la statura e il peso. Atti Soc Romana Antrop 5:125–153Google Scholar
  65. 65.
    Parnell RW (1958) Behavior and Physique: An introduction to practical applied somatometry. Arnold, LondonGoogle Scholar
  66. 66.
    Benn RT (1971) Some mathematical properties of weight-for-height indices used as measures of adiposity. Br J Prev Soc Med 25:42–50PubMedCentralPubMedGoogle Scholar
  67. 67.
    Durnin J, Womersle J (1974) Body fat assessed from total-body density and its estimation from skinfold thickness: measurements on 281 men and women aged from 16 to 72 years. Br J Nutr 32:77–97PubMedCrossRefGoogle Scholar
  68. 68.
    Matiegka J (1921) The testing of physical efficiency. Am J Phys Anthropol 4:223–230CrossRefGoogle Scholar
  69. 69.
    Egger G (1992) The case for using waist to hip ratio measurements in routine medical checks. Med J Aust 156:280–285PubMedGoogle Scholar
  70. 70.
    Yusuf S, Hawken S, Ounpuu S et al (2005) Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366:1640–1649PubMedCrossRefGoogle Scholar
  71. 71.
    Molarius A, Seidell JC (1998) Selection of anthropometric indicators for classification of abdominal fatness – a critical review. Int J Obes 22:719–727CrossRefGoogle Scholar
  72. 72.
    Misra A, Wasir JS, Vikram NK (2005) Waist circumference criteria for the diagnosis of abdominal obesity are not applicable uniformly to all populations and ethnic groups. Nutrition 21:969–976PubMedCrossRefGoogle Scholar
  73. 73.
    Chan DC, Watts GF, Barrett PHR et al (2003) Waist circumference, waist-to-hip ratio and body mass index as predictors of adipose tissue compartments in men. QJM 96:441–447PubMedCrossRefGoogle Scholar
  74. 74.
    WHO (2000) The Asia-Pacific perspective: redefining obesity and its treatment. Health Communications Australia Pty Limited on behalf of the Steering CommitteeGoogle Scholar
  75. 75.
    WHO (2002) Diet, nutrition and the prevention of chronic diseases. In: Joint WHO/FAO Expert Consulation Meeting on Diet, Nutrition and the Prevention of Chronic Diseases. World Health Organization, Geneva, S 69. http://www.who.int/dietphysicalactivity/publications/trs916/download/en/. Zugegriffen: 26. Okt. 2014Google Scholar
  76. 76.
    Flegal KM, Shepherd JA, Looker AC et al (2009) Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr 89:500–508PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Flegal KM, Graubard BI (2009) Estimates of excess deaths associated with body mass index and other anthropometric variables. Am J Clin Nutr 89(4):1213–1219PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Bigaard J, Tjonneland A, Thomsen BL et al (2003) Waist circumference, BMI, smoking, and mortality in middle-aged men and women. Obes Res 11:895–903PubMedCrossRefGoogle Scholar
  79. 79.
    Hauner H, Buchholz G, Hamann A et al (2007) Prävention und Therapie der Adipositas – Evidenzbasierte Leitlinie. In: Deutsche Adipositas Gesellschaft, S 6Google Scholar
  80. 80.
    Schulz LO (1993) Methods of body-composition analysis – the status of the gold standard. Trends Endocrinol Metab 4:318–322PubMedCrossRefGoogle Scholar
  81. 81.
    Behnke AR (1942) The specific gravity of healthy men – body weight divided by volume as an index of obesity. J Am Med Assoc 118:495–498CrossRefGoogle Scholar
  82. 82.
    Brozek J, Grande F, Anderson JT et al (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci 110:113–140PubMedCrossRefGoogle Scholar
  83. 83.
    Garrow JS, Stalley S, Diethelm R et al (1979) New method for measuring the body density of obese adults. Br J Nutr 42:173–183PubMedCrossRefGoogle Scholar
  84. 84.
    Mccrory MA, Gomez TD, Bernauer EM et al (1995) Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc 27:1686–1691PubMedCrossRefGoogle Scholar
  85. 85.
    Lohman TG (1984) Research progress in validation of laboratory methods of assessing body composition. Med Sci Sports Exerc 16:596–605PubMedGoogle Scholar
  86. 86.
    Lukaski HC, Bolonchuk WW (1988) Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med 59:1163–1169PubMedGoogle Scholar
  87. 87.
    Lukaski HC, Johnson PE, Bolonchuk WW et al (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41:810–817PubMedGoogle Scholar
  88. 88.
    Pethig R (1987) Dielectric properties of body tissues. Clin Phys Physiol Meas 8:5–12PubMedCrossRefGoogle Scholar
  89. 89.
    Harrison GG, Vanitallie TB (1982) Estimation of body-composition – a new approach based on electromagnetic principles. Am J Clin Nutr 35:1176–1179PubMedGoogle Scholar
  90. 90.
    Forbes GB, Hursh JB (1961) Estimation of total body fat from potassium-40 content. Science 133:1918PubMedCrossRefGoogle Scholar
  91. 91.
    Beddoe AH, Zuidmeer H, Hill GL (1984) A prompt gamma in vivo neutron-activation analysis facility for measurement of total-body nitrogen in the critically ill. Phys Med Biol 29:371–383PubMedCrossRefGoogle Scholar
  92. 92.
    Chettle DR, Fremlin JH (1984) Techniques of in vivo neutron-activation analysis. Phys Med Biol 29:1011–1043PubMedCrossRefGoogle Scholar
  93. 93.
    Sutcliffe JF (1996) A review of in vivo experimental methods to determine the composition of the human body. Phys Med Biol 41:791–833PubMedCrossRefGoogle Scholar
  94. 94.
    Borkan GA, Hults DE, Gerzof SG et al (1983) Relationships between Computed-Tomography tissue areas, thicknesses and total-body composition. Ann Hum Biol 10:537–546PubMedCrossRefGoogle Scholar
  95. 95.
    Sjostrom L, Kvist H, Cederblad A et al (1986) Determination of total adipose-tissue and body-fat in women by Computed-Tomography, K-40, and Tritium. Am J Physiol 250:E736–E745PubMedGoogle Scholar
  96. 96.
    Mazess RB, Barden HS, Bisek JP et al (1990) Dual-Energy X-Ray Absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 51:1106–1112PubMedGoogle Scholar
  97. 97.
    Fowler PA, Fuller MF, Glasbey CA et al (1991) Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nutr 54:18–25PubMedGoogle Scholar
  98. 98.
    Ross R (2002) Advances in the application of imaging methods in applied and clinical physiology. In: 6th International Symposium on In Vivo Body Composition Studies. Springer-Verlag, Rome, S S45–S50Google Scholar
  99. 99.
    Lukaski HC, Siders WA, Nielsen EJ et al (1994) Total-body water in pregnancy – assessment by using bioelectrical- impedance. Am J Clin Nutr 59:578–585PubMedGoogle Scholar
  100. 100.
    Wells JC, Fewtrell MS (2006) Measuring body composition. Arch Dis Child 91:612–617PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Bohlen
    • 1
  • M. Boll
    • 2
  • M. Schwarzer
    • 2
  • D.A. Groneberg
    • 2
    Email author
  1. 1.Institut für ArbeitsmedizinCharité – Universitätsmedizin BerlinBerlinDeutschland
  2. 2.Institut für Arbeitsmedizin, Sozialmedizin und UmweltmedizinGoethe-Universität FrankfurtFrankfurtDeutschland

Personalised recommendations