Skip to main content

Advertisement

Log in

Diabetes mellitus und Demenz

Diabetes mellitus and dementia

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Epidemiologische Studien konnten eine Assoziation von Diabetes mellitus mit leichten kognitiven Störungen und Demenzerkrankungen nachweisen. Je länger der Diabetes besteht und je länger er nicht suffizient behandelt wird, desto höher ist das Demenzrisiko. Diabetes begünstigt die neuropathologischen Veränderungen der Alzheimer-Erkrankung. Diabetische Mikroangiopathie und pathologische Angiogenese fördern die chronische Inflammation und zerebrale Hypoxie. Oxidativer Stress schädigt Zellen direkt. Glykation führt zu mitochondrialer Dysfunktion. Insulin konkurriert mit β-Amyloid um ein insulinabbauendes Enzym, wodurch der Abbau von β-Amyloid gestört wird. Diese Prozesse fördern die β-Amyloid-Bildung und τ-Hyperphosphorylierung. Therapeutische Ansätze aus der Diabetesbehandlung, wie Lebensstilveränderungen, Metformin, Insulin-Sensitizer und Insulingabe, werden derzeit bezüglich ihres neuroprotektiven Potenzials untersucht bzw. haben bereits vielversprechende Ergebnisse gezeigt. Aufgrund seiner hohen Inzidenz wird Diabetes mellitus bei Prävention und Therapie der Demenz zunehmende Bedeutung beigemessen.

Abstract

Epidemiological studies have demonstrated an association between diabetes mellitus, cognitive impairment and dementia. The risk of dementia is positively associated with the duration and insufficient treatment of diabetes. Diabetes promotes neuropathological changes observed in Alzheimer’s disease. Microangiopathy and pathological angiogenesis induce chronic inflammation and cerebral hypoxia. Oxidative stress directly causes cell damage and glycation leads to mitochondrial dysfunction. Both insulin and beta amyloid are substrates of an insulin-degrading enzyme which explains decreased beta amyloid degradation in cases of hyperinsulinemia. All these processes promote the formation of beta amyloid plaques and hyperphosphorylation of tau protein. Antidiabetic therapies, such as change of lifestyle, metformin, insulin sensitizers and insulin, are currently being investigated. Due to the high burden of disease effective prevention and treatment of diabetes mellitus could translate into a substantial reduction of dementia cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10:819–828

    Article  PubMed  Google Scholar 

  2. Biessels GJ, Staekenborg S, Brunner E et al (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74

    Article  PubMed  Google Scholar 

  3. Brands AM, Biessels GJ, Haan EH de et al (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735

    Article  PubMed  Google Scholar 

  4. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  5. Cherbuin N, Sachdev P, Anstey KJ (2012) Higher normal fasting plasma glucose is associated with hippocampal atrophy: the PATH Study. Neurology 79:1019–1026

    Article  PubMed  Google Scholar 

  6. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130

    Article  PubMed  Google Scholar 

  7. Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia 48:2460–2469

    Article  PubMed  CAS  Google Scholar 

  8. Monte SM de la (2012) Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease. Drugs 72:49–66

    Article  PubMed  Google Scholar 

  9. Devi L, Alldred MJ, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of beta-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 7:e32792

    Article  PubMed  CAS  Google Scholar 

  10. Etgen T, Sander D, Bickel H, Förstl H (2011) Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int 108:743–750

    PubMed  Google Scholar 

  11. Feart C, Samieri C, Rondeau V et al (2009) Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 302:638–648

    Article  PubMed  CAS  Google Scholar 

  12. Gold M, Alderton C, Zvartau-Hind M et al (2010) Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30:131–146

    Article  PubMed  CAS  Google Scholar 

  13. Imfeld P, Bodmer M, Jick SS, Meier CR (2012) Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc 60:916–921

    Article  PubMed  Google Scholar 

  14. Lin CH, Sheu WH (2013) Hypoglycaemic episodes and risk of dementia in diabetes mellitus: 7-year follow-up study. J Intern Med 273:102–110

    Article  PubMed  Google Scholar 

  15. Lu FP, Lin KP, Kuo HK (2009) Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 4:e4144

    Article  PubMed  Google Scholar 

  16. Luchsinger JA (2012) Type 2 diabetes and cognitive impairment: linking mechanisms. J Alzheimers Dis 30(Suppl 2):185–198

    Google Scholar 

  17. Sato T, Hanyu H, Hirao K et al (2011) Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32:1626–1633

    Article  PubMed  CAS  Google Scholar 

  18. Scarmeas N, Stern Y, Mayeux R et al (2009) Mediterranean diet and mild cognitive impairment. Arch Neurol 66:216–225

    Article  PubMed  Google Scholar 

  19. Shemesh E, Rudich A, Harman-Boehm I, Cukierman-Yaffe T (2012) Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab 97:366–376

    Article  PubMed  CAS  Google Scholar 

  20. Shingo AS, Kanabayashi T, Kito S, Murase T (2012) Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res 241C:105–111

    Google Scholar 

  21. Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6:551–559

    Article  PubMed  CAS  Google Scholar 

  22. Sofi F, Valecchi D, Bacci D et al (2010) Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269:107–117

    Article  PubMed  Google Scholar 

  23. Vagnucci AH Jr, Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361:605–608

    Article  PubMed  CAS  Google Scholar 

  24. Valente T, Gella A, Fernandez-Busquets X et al (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37:67–76

    Article  PubMed  CAS  Google Scholar 

  25. Wang KC, Woung LC, Tsai MT et al (2012) Risk of Alzheimer’s disease in relation to diabetes: a population-based cohort study. Neuroepidemiology 38:237–244

    Article  PubMed  Google Scholar 

  26. Watson GS, Bernhardt T, Reger MA et al (2006) Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 27:38–41

    Article  PubMed  CAS  Google Scholar 

  27. Whitmer RA, Karter AJ, Yaffe K et al (2009) Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301:1565–1572

    Article  PubMed  CAS  Google Scholar 

  28. Yuzwa SA, Shan X, Macauley MS et al (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8:393–399

    Article  PubMed  CAS  Google Scholar 

  29. Zhang H, Dellsperger KC, Zhang C (2012) The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 107:237

    Article  PubMed  Google Scholar 

  30. Cheng D, Noble J, Tang MX et al (2011) Type 2 diabetes and late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 31:424–430

    Article  PubMed  CAS  Google Scholar 

  31. Cherbuin N, Reglade-Meslin C, Kumar R et al (2009) Risk factors of transition from normal cognition to mild cognitive disorder: the PATH through Life Study. Dement Geriatr Cogn Disord 28:47–55

    Article  PubMed  Google Scholar 

  32. Curb JD, Rodriguez BL, Abbott RD et al (1999) Longitudinal association of vascular and Alzheimer’s dementias, diabetes, and glucose tolerance. Neurology 52:971–975

    Article  PubMed  CAS  Google Scholar 

  33. Gregg EW, Yaffe K, Cauley JA et al (2000) Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of osteoporotic fractures research group. Arch Intern Med 160:174–180

    Article  PubMed  CAS  Google Scholar 

  34. Irie F, Fitzpatrick AL, Lopez OL et al (2008) Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the cardiovascular health study cognition study. Arch Neurol 65:89–93

    Article  PubMed  Google Scholar 

  35. Logroscino G, Kang JH, Grodstein F (2004) Prospective study of type 2 diabetes and cognitive decline in women aged 70–81 years. BMJ 328:548

    Article  PubMed  Google Scholar 

  36. National Institute on Aging/National Institutes of Health (o J) http://www.nia.nih.gov/alzheimers/scientific-images

  37. Ott A, Stolk RP, Harskamp F van, Pols HA et al (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53:1937–1942

    Article  PubMed  CAS  Google Scholar 

  38. Peila R, Rodriguez BL, Launer LJ (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 51:1256–1262

    Article  PubMed  CAS  Google Scholar 

  39. Schnaider-Beeri M, Goldbourt U, Silverman JM et al (2004) Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology 63:1902–1907

    Article  PubMed  CAS  Google Scholar 

  40. Strand BH, Langballe EM, Hjellvik V et al (2013) Midlife vascular risk factors and their association with dementia deaths: results from a Norwegian prospective study followed up for 35 years. J Neurol Sci 324:124–130

    Article  PubMed  Google Scholar 

  41. Wang KC, Woung LC, Tsai MT et al (2012) Risk of Alzheimer’s disease in relation to diabetes: a population-based cohort study. Neuroepidemiology 38:237–244

    Article  PubMed  Google Scholar 

  42. Whitmer RA, Sidney S, Selby J et al (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64:277–281

    Article  PubMed  CAS  Google Scholar 

  43. Xu W, Qiu C, Winblad B, Fratiglioni L (2007) The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes 56:211–216

    Article  PubMed  CAS  Google Scholar 

  44. Xu WL, Qiu CX, Wahlin A et al (2004) Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63:1181–1186

    Article  PubMed  CAS  Google Scholar 

  45. Xu WL, Strauss E von, Qiu CX et al (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039

    Article  PubMed  CAS  Google Scholar 

  46. Yaffe K, Blackwell T, Kanaya AM et al (2004) Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63:658–663

    Article  PubMed  CAS  Google Scholar 

  47. Yaffe K, Fiocco AJ, Lindquist K et al (2009) Predictors of maintaining cognitive function in older adults: the Health ABC Study. Neurology 72:2029–2035

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seinen Koautor auf folgende Beziehungen hin: H.F erhielt Mittel von fast allen in Deutschland auf dem Gebiet psychischer Erkrankungen tätigen Pharmafirmen für Projekte, Beratung und Vorträge. B.F. erhielt Mittel von Lundbeck für Seminare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fatke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatke, B., Förstl, H. Diabetes mellitus und Demenz. Diabetologe 9, 217–225 (2013). https://doi.org/10.1007/s11428-012-0951-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-012-0951-9

Schlüsselwörter

Keywords

Navigation