Skip to main content
Log in

Neues zur Pathobiochemie der diabetischen Dyslipidämie

Recent findings on the pathobiochemistry of diabetic dyslipidemia

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Die diabetische Dyslipidämie stellt bei Menschen mit Typ-2-Diabetes einen wichtigen kardiovaskulären Risikofaktor dar. Verantwortlich für die Veränderungen im Lipidstoffwechsel ist insbesondere die Insulinresistenz, die die exzessive Bildung von großen, triglyzeridreichen Very-low-density-Lipoprotein(VLDL)-1-Partikeln und somit die Hypertriglyzeridämie begünstigt. Die erhöhten VLDL-Plasma-Spiegel entstehen zum einem durch vermehrte Produktion infolge des gesteigerten Zuflusses freier Fettsäuren zur Leber und zum anderen durch verminderten Abbau infolge von Insulinresistenz und niedrigem Adiponektinplasmaspiegel. Eine Ansammlung triglyzeridreicher Lipoproteine führt zur vermehrten Anzahl kleiner, dichter Low-density Lipoproteins („small-dense-LDL“, sdLDL) und verringerter Konzentration der Cholesterin rücktransportierenden High-density-Lipoprotein(HDL)-Partikel. Durch das Cholesterinestertransferprotein (CETP) wird der Austausch von Triglyzeriden der VLDL oder Chylomikronen gegen Cholesterinester der LDL- bzw. HDL-Partikel vermittelt. Durch Hydrolyse der triglyzeridreichen LDL bzw. HDL entsteht schließlich die atherogene Komposition aus sdLDL und kleineren, dysfunktionalen HDL-Partikeln, die rasch abgebaut werden.

Abstract

Diabetic dyslipidemia is an important cardiovascular risk factor in patients with type 2 diabetes. In particular insulin resistance, which favors excessive production of large, triglyceride-rich very-low-density lipoprotein (VLDL) 1 particles and consequently hypertriglyceridemia, is responsible for the alterations in lipid metabolism. Increased VLDL plasma levels result on the one hand from increased VLDL production due to the enhanced flow of free fatty acids to the liver and on the other hand from diminished VLDL degradation due to insulin resistance and low adiponectin plasma levels. The accumulation of triglyceride-rich lipoproteins causes an increased number of so-called small-dense LDLs (sdLDL) and a reduced concentration of high density lipoprotein (HDL) particles which transport cholesterol to the liver. The exchange of triglycerides from VLDL and chylomicrons for cholesteryl esters from LDLs and HDLs, respectively, is facilitated by cholesterylester transfer protein (CETP). Hydrolysis of triglyceride-rich LDLs and HDLs ultimately results in the atherogenic composition of sdLDL and small, dysfunctional HDL particles, which are rapidly metabolized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Adiels M, Boren J, Caslake MJ et al (2005) Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol 25:1697–1703

    Article  PubMed  CAS  Google Scholar 

  2. Adiels M, Olofsson SO, Taskinen MR et al (2006) Diabetic dyslipidaemia. Curr Opin Lipidol 17:238–246

    Article  PubMed  CAS  Google Scholar 

  3. Beisiegel U (1998) Lipoprotein metabolism. Eur Heart J 19(Suppl A):A20–A23

    PubMed  CAS  Google Scholar 

  4. Bjorkegren J, Packard CJ, Hamsten A et al (1996) Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J Lipid Res 37:76–86

    PubMed  CAS  Google Scholar 

  5. Brown RJ, Rader DJ (2008) When HDL gets fat. Circ Res 103:131–132

    Article  PubMed  CAS  Google Scholar 

  6. Caron S, Verrijken A, Mertens I et al (2011) Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol 31:513–519

    Article  PubMed  CAS  Google Scholar 

  7. Denechaud PD, Dentin R, Girard J et al (2008) Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 582:68–73

    Article  PubMed  CAS  Google Scholar 

  8. Ginsberg HN (1991) Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care 14:839–855

    Article  PubMed  CAS  Google Scholar 

  9. Goldberg IJ (2001) Clinical review 124: Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab 86:965–971

    Article  PubMed  CAS  Google Scholar 

  10. Hodson L, Bickerton AS, McQuaid SE et al (2007) The contribution of splanchnic fat to VLDL triglyceride is greater in insulin-resistant than insulin-sensitive men and women: studies in the postprandial state. Diabetes 56:2433–2441

    Article  PubMed  CAS  Google Scholar 

  11. Kannel WB (1985) Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 110:1100–1107

    Article  PubMed  CAS  Google Scholar 

  12. Krssak M, Roden M (2004) The role of lipid accumulation in liver and muscle for insulin resistance and type 2 diabetes mellitus in humans. Rev Endocr Metab Disord 5:127–134

    Article  PubMed  CAS  Google Scholar 

  13. Laatsch A, Merkel M, Talmud PJ et al (2009) Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis 204:105–111

    Article  PubMed  CAS  Google Scholar 

  14. Merkel M, Eckel RH, Goldberg IJ (2002) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43:1997–2006

    Article  PubMed  CAS  Google Scholar 

  15. Morton RE, Greene DJ (1997) Suppression of lipid transfer inhibitor protein activity by oleate. A novel mechanism of cholesteryl ester transfer protein regulation by plasma free fatty acids. Arterioscler Thromb Vasc Biol 17:3041–3048

    Article  PubMed  CAS  Google Scholar 

  16. Phillips C, Owens D, Collins P et al (2002) Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? Atherosclerosis 160:355–360

    Article  PubMed  CAS  Google Scholar 

  17. Roden M (2006) Mechanisms of disease: hepatic steatosis in type 2 diabetes: pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2:335–348

    Article  PubMed  CAS  Google Scholar 

  18. Taskinen MR (2003) Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46:733–749

    Article  PubMed  Google Scholar 

  19. UK Prospective Diabetes Study (UKPDS) (1994) XI: Biochemical risk factors in type 2 diabetic patients at diagnosis compared with age-matched normal subjects. Diabet Med 11:534–544

    Article  Google Scholar 

  20. Verges B (2010) Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 211:353–360

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Müssig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, F., Roden, M. & Müssig, K. Neues zur Pathobiochemie der diabetischen Dyslipidämie. Diabetologe 8, 550–555 (2012). https://doi.org/10.1007/s11428-012-0888-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-012-0888-z

Schlüsselwörter

Keywords

Navigation