Skip to main content
Log in

Genetische Studien zum Typ-2-Diabetes

Mögliche Implikationen für Prävention und Therapie

Genetic studies on type 2 diabetes

Potential implications for prevention and therapy

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Die genomweiten Assoziationsstudien der letzten Jahre haben gezeigt, dass viele Gene mit schwachen Effekten zum Risiko für den Typ-2-Diabetes beitragen. Die bislang bekannten Risikogene erklären 5–10% der genetischen Prädisposition. Obwohl die Kombination von Genotypdaten zeigt, dass Personen mit vielen Risikoallelen ein höheres Diabetesrisiko haben als Personen mit weniger Risikoallelen, können genetische Tests zurzeit die Prädiktion durch einfache anthropometrische und klinische Daten zwar statistisch signifikant, aber nicht klinisch relevant verbessern. Die genetischen Erkenntnisse untermauern die Hypothese, dass in der Entstehung des Typ-2-Diabetes eine genetisch programmierte Betazelldysfunktion und eine durch Umwelt- und Lebensstilfaktoren ausgelöste Insulinresistenz zusammenwirken. Erste Studien legen nahe, dass das genetische Risiko durch Lebensstilintervention modifiziert wird und dass Genvarianten einen Einfluss auf den Therapieerfolg mit bestimmten Pharmaka haben können. Ein besseres Verständnis der Genetik wird eine präzisere Aufklärung der molekularen Pathogenese des Typ-2-Diabetes erlauben und bei der Entdeckung neuer Angriffspunkte für pharmakologische Therapien helfen.

Abstract

Recent genomewide association studies revealed that many genes with weak or moderate effects contribute to the risk of type 2 diabetes. The risk genes that are known so far explain 5%–10% of the genetic predisposition. Although the combination of genotype data shows that individuals with many risk alleles have a higher diabetes risk than individuals with fewer risk alleles, and genetic tests lead to a statistically significant improvement of prediction models based on simple anthropometric and clinical data only, this difference is currently not clinically relevant. The novel genetic data substantiate the hypothesis that a genetically programmed beta-cell dysfunction interacts with insulin resistance, caused by environmental and lifestyle factors, in the development of type 2 diabetes. Initial studies indicate that the genetic risk can be modified by lifestyle intervention and that gene variants can have an impact on the therapeutic efficacy of certain drugs. A better understanding of the genetics will result in a deeper insight into the molecular pathogenesis of type 2 diabetes and in the development of novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Cauchi S, Meyre D, Durand E et al (2008) Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 3:e2031

    Article  PubMed  Google Scholar 

  2. Cornelis MC, Qi L, Kraft P et al (2009) TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr 89:1256–1262

    Article  CAS  PubMed  Google Scholar 

  3. Doria A, Patti ME, Kahn CR (2008) The emerging genetic architecture of type 2 diabetes. Cell Metab 8:186–200

    Article  CAS  PubMed  Google Scholar 

  4. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  CAS  PubMed  Google Scholar 

  5. Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110

    Article  CAS  PubMed  Google Scholar 

  6. Florez JC, Jablonski KA, Bayley N et al (2006) TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med 355:241–250

    Article  CAS  PubMed  Google Scholar 

  7. Frayling TM, Colhoun H, Florez JC (2008) A genetic link between type 2 diabetes and prostate cancer. Diabetologia 51:1757–1760

    Article  CAS  PubMed  Google Scholar 

  8. Grallert H, Herder C, Marzi C et al (2010) Association of genetic variation in KCNQ1 with type 2 diabetes in the KORA surveys. Horm Metab Res 42:149–151

    Article  CAS  PubMed  Google Scholar 

  9. Grant RW, Moore AF, Florez JC (2009) Genetic architecture of type 2 diabetes: recent progress and clinical implications. Diabetes Care 32:1107–1114

    Article  CAS  PubMed  Google Scholar 

  10. Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  CAS  PubMed  Google Scholar 

  11. Gudmundsson J, Sulem P, Steinthorsdottir V et al (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39:977–983

    Article  CAS  PubMed  Google Scholar 

  12. Kong A, Steinthorsdottir V, Masson G et al (2009) Parental origin of sequence variants associated with complex diseases. Nature 462:868–874

    Article  CAS  PubMed  Google Scholar 

  13. Lango H, UK Type 2 Diabetes Genetics Consortium, Palmer CN et al (2008) Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57:3129–3135

    Article  CAS  PubMed  Google Scholar 

  14. Lin X, Song K, Lim N et al (2009) Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score – the CoLaus Study. Diabetologia 52:600–608

    Article  CAS  PubMed  Google Scholar 

  15. Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232

    Article  CAS  PubMed  Google Scholar 

  16. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  Google Scholar 

  17. Marzi C, Huth C, Kolz M et al (2007) Variants of the transcription factor 7-like 2 gene (TCF7L2) are strongly associated with type 2 diabetes but not with the metabolic syndrome in the MONICA/KORA surveys. Horm Metab Res 39:46–52

    Article  CAS  PubMed  Google Scholar 

  18. McCarthy MI, Hattersley AT (2008) Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 57:2889–2898

    Article  CAS  PubMed  Google Scholar 

  19. Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219 (Erratum in: N Engl J Med 2009; 360:648)

    Google Scholar 

  20. O’Rahilly S (2009) Human genetics illuminates the paths to metabolic disease. Nature 462:307–314

    Article  Google Scholar 

  21. Pearson ER, Donnelly LA, Kimber C et al (2007) Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 56:2178–2182

    Article  CAS  PubMed  Google Scholar 

  22. Permutt MA, Wasson J, Cox N (2005) Genetic epidemiology of diabetes. J Clin Invest 115:1431–1439

    Article  CAS  PubMed  Google Scholar 

  23. Prokopenko I, Langenberg C, Florez JC et al (2009). Variants in MNTR1B influence fasting glucose levels. Nat Genet 41:77–81

    Article  CAS  PubMed  Google Scholar 

  24. Rung J, Cauchi S, Albrechtsen A et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41:1110–1115 (Erratum in: Nat Genet 2009; 41:1156)

    Google Scholar 

  25. Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838

    Article  PubMed  Google Scholar 

  26. Unoki H, Takahashi A, Kawaguchi T et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102

    Article  CAS  PubMed  Google Scholar 

  27. Hoek M van, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128

    Article  PubMed  Google Scholar 

  28. Wang J, Kuusisto J, Vänttinen M et al (2007) Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 50:1192–1200

    Article  CAS  PubMed  Google Scholar 

  29. Yasuda K, Miyake K, Horikawa Y et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40:1092–1097

    Article  CAS  PubMed  Google Scholar 

  30. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Herder M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herder, C. Genetische Studien zum Typ-2-Diabetes. Diabetologe 6, 203–209 (2010). https://doi.org/10.1007/s11428-009-0500-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-009-0500-3

Schlüsselwörter

Keywords

Navigation