Skip to main content
Log in

Hypophysenstörungen und sekundärer Diabetes mellitus

Pituitary diseases and secondary diabetes

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Hypophysenadenome mit Mehrproduktion an Insulin-antagonisierenden Hormonen (z. B. Wachstumshormon, ACTH) führen zum klinischen Bild einer Akromegalie oder eines M. Cushing und gehen oft mit Insulinresistenz bis hin zum Diabetes mellitus einher. Die Gesamtprävalenz der Glukosestoffwechselstörungen bei Akromegalie liegt bei 54% der Patienten (gestörte Glukosetoleranz bei 16–46%, Diabetes bei 15,5%). Parallel treten auch atherogene Veränderungen im Lipidstoffwechsel auf. Ähnliche metabolische Veränderungen sind auch beim M. Cushing zu finden (gestörte Glukosetoleranz bei 30,6%, Diabetes bei 20–50% der Patienten). Diese Veränderungen tragen zu einem erhöhten kardiovaskulären Risiko bei, das vor allem bei M. Cushing über Jahre nach erfolgreicher Therapie fortbestehen kann.

Wichtig ist eine frühe Diagnose der hypophysären Erkrankung mit einem entsprechenden metabolischen Screening. Meistens stellt die erfolgreiche Behandlung der Grunderkrankung auch die Therapie der Glukosestoffwechselstörung dar. Bis zur effektiven Kontrolle der Hormonmehrproduktion stehen leitliniengerecht für die Behandlung des sekundären Diabetes Diät, Medikamente und Insulin zur Verfügung.

Abstract

Pituitary adenomas with excessive production of insulin-counteracting hormones (e.g. growth hormone, ACTH) emerge in the clinical picture of acromegaly or Cushing’s syndrome and often present with insulin resistance or even secondary diabetes. A total of 54% of patients with acromegaly show traits of an altered carbohydrate metabolism (impaired glucose tolerance in 16%–46%, diabetes in 15.5%). These changes are accompanied by atherogenic alterations of the lipid profile. Similar metabolic disturbances are encountered in patients with Cushing’s syndrome (impaired glucose tolerance in 30.6%, diabetes in 20%–50% of patients). These alterations lead to an increased cardiovascular risk, which persists years after effective cure of the underlying disease in the setting of Cushing’s syndrome.

These data outline the importance of an early diagnosis of the pituitary disease, accompanied by appropriate metabolic screening. Successful treatment of the underlying pituitary disease usually normalizes glucose metabolism. Until an effective hormonal control is achieved, secondary diabetes should be treated with diet, medication and/or insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baldelli R, De Marinis L, Bianchi A et al (2008) Microalbuminuria and insulin sensitivity in patients with growth hormone-secreting pituitary tumor. J Clin Endocrinol Metab 93:710–714

    Article  CAS  PubMed  Google Scholar 

  2. Barkan AL, Burman P, Clemmons DR et al (2005) Glucose homeostasis and safety in patients with acromegaly converted from long-acting octreotide to pegvisomant. J Clin Endocrinol Metab 90(10):5684–5691

    Article  CAS  PubMed  Google Scholar 

  3. Biering H, Knappe G, Gerl H et al (2000) Prevalence of diabetes in acromegaly and Cushing syndrome. Acta Med Aust 27:27–31

    Article  CAS  Google Scholar 

  4. Biller BKM, Grossmann AB, Stewart S et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462

    Article  CAS  PubMed  Google Scholar 

  5. Cappiello V, Ronchi C, Morpurgo PS et al (2002) Circulating ghrelin levels in basal conditions and during glucose tolerance test in acromegalic patients. Eur J Endocrinol 147:189–194

    Article  CAS  PubMed  Google Scholar 

  6. Catargi B, Rigalleau V, Poussin A et al (2003) Occult Cushing’s syndrome in type-2 diabetes. J Clin Endocrinol Metab 88(12):5808–5813

    Article  CAS  PubMed  Google Scholar 

  7. Colao A, Ferone D, Marzullo P et al (2004) Systemic complications of acromegaly: epidemiology, pathogenesis and management. Endocr Rev 25(1):102–152

    Article  CAS  PubMed  Google Scholar 

  8. Colao A, Pivonello R, Spiezia S et al (1999) Persistance of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84:2664–2672

    Article  CAS  PubMed  Google Scholar 

  9. Foss MC, Saad MJ, Paccola GM et al (1991) Peripheral glucose metabolism in acromegaly. J Clin Endocrinol Metab 72:1048–1053

    Article  CAS  PubMed  Google Scholar 

  10. Heaney AP, Harper R, Ennis C et al (1997) Insulin action and hepatic glucose cycling in Cushing’s syndrome. Clin Endocrinol 46:735–743

    Article  CAS  Google Scholar 

  11. Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89:667–674

    Article  CAS  PubMed  Google Scholar 

  12. Kasayama S, Otsuki M, Takagi M et al (2000) Impaired β-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin Endocrinol (Oxf) 52:549–555

    Google Scholar 

  13. Koh JM, Kim JY, Chung YE et al (2000) Increased urinary albumin excretion in Cushing’s syndrome: remission after correction of hypercortisolaemia. Clin Endocrinol (Oxf) 52:349–353

    Google Scholar 

  14. Kreze A, Kreze-Spirova E, Mikulecky M (2001) Risk factors for glucose intolerance in active acromegaly. Braz J Med Biol Res 34:1429–1433

    Article  CAS  PubMed  Google Scholar 

  15. Moller N, Jorgensen JO, Abildgard N et al (1991) Effects of growth hormone on glucose metabolism. Horm Res 36 (Suppl 1):32–35

    PubMed  Google Scholar 

  16. Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association doe the Study of Diabetes. Diabetes Care 32:193–203

    Article  CAS  PubMed  Google Scholar 

  17. Newell-Price J, Grossman AB (2007) Differential diagnosis of Cushing’s syndrome. Arq Bras Endocrinol Metabol 51/8:1199–1206

    Google Scholar 

  18. Page R, Boolell M, Kalfas A et al (1991) Insulin secretion, insulin sensitivity and glucose-mediated glucose disposal in Cushing’s disease: a minimal model analysis. Clin Endocrinol (Oxf) 35(6):509–517

    Google Scholar 

  19. Paisley AN, Drake WM (2005) Treatment of pituitary tumors: pegvisomant. Endocrine 28:111–114

    Article  CAS  PubMed  Google Scholar 

  20. Peracchi M, Porretti S, Gebbia C et al (2001) Increased glucose-dependent insulinotropic polypeptide (GIP) secretion in acromegaly. Eur J Endocrinol 145:R1–R4

    Article  CAS  PubMed  Google Scholar 

  21. Pivonello R, De Martino MC, De Leo M et al (2008) Cushing’s syndrome. Endocrinol Metab Clin North Am 37:135–149

    Article  CAS  PubMed  Google Scholar 

  22. Resmini E, Minuto F, Colao A et al (2009) Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetol 46:85–95

    Article  CAS  PubMed  Google Scholar 

  23. Rajasoorya C, Holdaway IM, Wrightson P et al (1994) Determinants of clinical outcome and survival in acromegaly. Clin Endocrinol (Oxf) 41:95–102

    Google Scholar 

  24. Ronchi C, Epaminonda P, Cappiello V et al (2002) Effects of two different somatostatin analogs on glucose tolerance in acromegaly. J Endocrinol Invest 25:502–507

    CAS  PubMed  Google Scholar 

  25. Sonksen PH, Greenwood FC, Ellis JP et al (1967) Changes of carbohydrate tolerance in acromegaly with progress of the disease and in response to treatment. J Clin Endocrinol Metab 27:1418–1430

    Article  CAS  PubMed  Google Scholar 

  26. Tan KC, Shiu SW, Janus ED et al (1997) LDL subfractions in acromegaly: relation to growth hormone and insulin-like growth factor-I. Atherosclerosis 129:59–65

    Article  CAS  PubMed  Google Scholar 

  27. Terzolo M, Bovio S, Pia A et al (2007) Subclinical Cushing’s syndrome. Arq Bras Endocrinol Metabol 51/8:1272–1279

    Google Scholar 

  28. Vilar L, da Conceicao Freitas M, Lima LH et al (2007) Cushing’s syndrome in pregnancy: an overview. Arq Bras Endocrinol Metabol 51/8:1293–1302

    Google Scholar 

  29. Wildbrett J, Hanefeld M, Fucker K et al (1997) Anomalies of lipoprotein pattern and fibrinolysis in acromegalic patients: relation to growth hormone levels and insulin-like growth factor I. Exp Clin Endocrinol Diabetes 105:331–335

    Article  CAS  PubMed  Google Scholar 

  30. Withworth JA, Williamson PM, Mangos G et al (2005) Cardiovascular consequences of cortisol excess. Vasc Health Risk Manag I(4):291–299

    Article  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, A., Weber, M. Hypophysenstörungen und sekundärer Diabetes mellitus. Diabetologe 6, 29–36 (2010). https://doi.org/10.1007/s11428-009-0438-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-009-0438-5

Schlüsselwörter

Keywords

Navigation