Skip to main content
Log in

Gehirn und metabolisches Syndrom

The brain and the metabolic syndrome

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Wir zeigen eine neue Sichtweise, in der das Gehirn vor allem seinen eigenen hohen Energiebedarf sicherstellt (engl. „selfish brain“). Dazu fordert das Gehirn (zerebrale Hemisphären, Hypothalamus) aktiv Energie entweder aus dem Körper (Allokation) oder aus der Umwelt an (Nahrungsaufnahme). Wenn diese zerebrale Energieanforderung gestört ist, entstehen Erkrankungen wie Adipositas, das metabolische Syndrom und Typ-2-Diabetes-mellitus.

Abstract

We present here the new perspective that the brain primarily ensures its own high energy requirements (“selfish brain”). The brain (cerebral hemispheres, hypothalamus) actively requests energy either from the body (allocation) or the environment (food intake). Disruption of one of the cerebral energy request pathways leads to illnesses such as obesity, metabolic syndrome and type-2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Attwell D, Gibb A (2005) Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 6: 841–849

    Article  PubMed  CAS  Google Scholar 

  2. Bergfors M, Barnekow-Bergkvist M, Kalezic N et al. (2005) Short-term effects of repetitive arm work and dynamic exercise on glucose metabolism and insulin sensitivity. Acta Physiol Scand 183: 345–356

    Article  PubMed  CAS  Google Scholar 

  3. Burdakov D, Jensen LT, Alexopoulos H et al. (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50: 711–722

    Article  PubMed  CAS  Google Scholar 

  4. Capaldo B, Napoli R, Guida R et al. (1995) Forearm muscle insulin resistance during hypoglycemia: role of adrenergic mechanisms and hypoglycemia per se. Am J Physiol 268: E248–E254

    PubMed  CAS  Google Scholar 

  5. Cohen N, Rossetti L, Shlimovich P et al. (1995) Counterregulation of hypoglycemia. Skeletal muscle glycogen metabolism during three hours of physiological hyperinsulinemia in humans. Diabetes 44: 423–430

    Article  PubMed  CAS  Google Scholar 

  6. Dhillon H, Zigman JM, Ye C et al. (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49: 191–203

    Article  PubMed  CAS  Google Scholar 

  7. Fruehwald-Schultes B, Kern W, Born J et al. (2000) Comparison of the inhibitory effect of insulin and hypoglycemia on insulin secretion in humans. Metabolism 49: 950–953

    Article  PubMed  CAS  Google Scholar 

  8. Levin BE, Routh VH, Kang L et al. (2004) Neuronal glucosensing: what do we know after 50 years? Diabetes 53: 2521–2528

    Article  PubMed  CAS  Google Scholar 

  9. Looker HC, Knowler WC, Hanson RL (2001) Changes in BMI and weight before and after the development of type 2 diabetes. Diabetes Care 24: 1917–1922

    Article  PubMed  CAS  Google Scholar 

  10. Miki T, Liss B, Minami K et al. (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4: 507–512

    PubMed  CAS  Google Scholar 

  11. Mizuno A, Murakami T, Otani S et al. (1998) Leptin affects pancreatic endocrine functions through the sympathetic nervous system. Endocrinology 139: 3863–3870

    Article  PubMed  CAS  Google Scholar 

  12. Molina PE, Tepper PG, Yousef KA et al. (1994) Central NMDA enhances hepatic glucose output and non-insulin-mediated glucose uptake by a nonadrenergic mechanism. Brain Res 634: 41–48

    Article  PubMed  CAS  Google Scholar 

  13. Mulder AH, Tack CJ, Olthaar AJ et al. (2005) Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab, 289: E627–E633

    Google Scholar 

  14. Odeleye OE, Courten M de, Pettitt DJ, Ravussin E (1997) Fasting hyperinsulinemia is a predictor of increased body weight gain and obesity in Pima Indian children. Diabetes 48: 1341–1345

    Article  Google Scholar 

  15. Ohno-Shosaku T, Sawada S, Yamamoto C (1993) ATP-sensitive K+ channel activators suppress the GABAergic inhibitory transmission by acting on both presynaptic and postsynaptic sites in rat cultured hippocampal neurons. Neurosci Lett 159: 139–142

    Article  PubMed  CAS  Google Scholar 

  16. Oltmanns KM, Dodt B, Schultes B et al. (2006) Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients. Eur J Endocrinol 154: 325–331

    Article  PubMed  CAS  Google Scholar 

  17. Oltmanns KM, Melchert UH, Scholand-Engler HG et al. (2008) Differential energetic response of brain vs. skeletal muscle upon glycemic variations in healthy humans. Am J Physiol Regul Integr Comp Physiol 294: R12–R16

    PubMed  CAS  Google Scholar 

  18. Peters A, Conrad M, Hubold C et al. (2007) The principle of homeostasis in the Hypothalamus-Pituitary-Adrenal System: New insight from positive feedback. Am J Physiol Regul Integr Comp Physiol 293: 83–98

    Google Scholar 

  19. Peters A, Pellerin L, Dallman MF et al. (2007) Causes of obesity: looking beyond the hypothalamus. Prog Neurobiol 81: 61–88

    Article  PubMed  CAS  Google Scholar 

  20. Peters A, Schweiger U, Pellerin L et al. (2004) The selfish brain: competition for energy resources. Neurosci Biobehav Rev 28: 143–180

    Article  PubMed  CAS  Google Scholar 

  21. Sigal RJ, el Hashimy M, Martin BC et al. (1997) Acute postchallenge hyperinsulinemia predicts weight gain: a prospective study. Diabetes 46: 1025–1029

    Article  PubMed  CAS  Google Scholar 

  22. Steinkamp M, Li T, Fuellgraf H, Moser A (2007) K(ATP)-dependent neurotransmitter release in the neuronal network of the rat caudate nucleus. Neurochem Int 50: 159–163

    Article  PubMed  CAS  Google Scholar 

  23. Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886: 113–164

    Article  PubMed  CAS  Google Scholar 

  24. Swinburn BA, Nyomba BL, Saad MF et al. (1991) Insulin resistance associated with lower rates of weight gain in Pima Indians. J Clin Invest 88: 168–173

    Article  PubMed  CAS  Google Scholar 

  25. Yousef KA, Tepper PG, Molina PE et al. (1994) Differential control of glucoregulatory hormone response and glucose metabolism by NMDA and kainate. Brain Res 634: 131–140

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, A., Hubold, C. & Lehnert, H. Gehirn und metabolisches Syndrom. Diabetologe 4, 189–195 (2008). https://doi.org/10.1007/s11428-008-0228-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-008-0228-5

Schlüsselwörter

Keywords

Navigation