Abstract
China’s progressing space program, as evidenced by the formal operation of the China Space Station (CSS), has provided great opportunities for various space missions. Since microbes can present potential risks to human health and the normal operation of spacecraft, the study on space-microorganisms in the CSS is always a matter of urgency. In addition, the knowledge on the interactions between microorganisms, astronauts, and spacecraft equipment will shed light on our understanding of life activities in space and a closed environment. Here, we present the first comprehensive report on the microbial communities aboard the CSS based on the results of the first two survey missions of the CSS Habitation Area Microbiome Program (CHAMP). By combining metagenomic and cultivation methods, we have discovered that, in the early stage of the CSS, microbial communities are dominated by human-associated microbes, with strikingly large differences in both composition and functional diversity compared to those found on the International Space Station (ISS). While the samples from two missions of CHAMP possessed substantial differences in microbial composition, no significant difference in functional diversity was found, although signs of accumulating antibiotic resistance were evident. Meanwhile, strong bacteria co-occurrence was noted within the station’s microbiota. At the strain level, environmental isolates from the CSS exhibited numerous genomic mutations compared to those from the Assembly, Integration, and Test (AIT) center, potentially linked to the adaptation to the unique conditions of space. Besides, the intraspecies variation within four high-abundance species suggests possible propagation and residency effects between sampling sites. In summary, this study offers critical insights that not only advance our understanding of space microbiology but also lay the groundwork for effective microbial management in future long-term human space missions.
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Availability of data and materials
The genomic sequences of 19 genomes in the present study have been deposited in the National Microbiology Data Center with accession numbers NMDCN0006IF5–NMDCN0006IFM. The metagenomic sequencing data of all 18 environmental samples has been deposited in the National Genomics Data Center under accession number PRJCA033252 and National Microbiology Data Center under accession number NMDC10019486.
References
Acres, J.M., Youngapelian, M.J., and Nadeau, J. (2021). The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. npj Microgravity 7, 7.
Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, A., Petkau, A., Syed, S.A., Tsang, K.K., et al. (2023). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 51, D690–D699.
Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E. L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., et al. (2021). Pfam: the protein families database in 2021. Nucleic Acids Res 49, D412–D419.
Be, N.A., Avila-Herrera, A., Allen, J.E., Singh, N., Checinska Sielaff, A., Jaing, C., and Venkateswaran, K. (2017). Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 5, 81.
Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L.J., Thompson, K.N., Zolfo, M., Manghi, P., Dubois, L., Huang, K.D., Thomas, A.M., et al. (2023). Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 41, 1633–1644.
Bryan, N.C., Christner, B.C., Guzik, T.G., Granger, D.J., and Stewart, M.F. (2019). Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J 13, 2789–2799.
Buchfink, B., Reuter, K., and Drost, H.G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18, 366–368.
Castro, V.A., Thrasher, A.N., Healy, M., Ott, C.M., and Pierson, D.L. (2004). Microbial characterization during the early habitation of the international space station. Microb Ecol 47, 119–126.
Checinska, A., Probst, A.J., Vaishampayan, P., White, J.R., Kumar, D., Stepanov, V.G., Fox, G.E., Nilsson, H.R., Pierson, D.L., Perry, J., et al. (2015). Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 3, 1–8.
Checinska Sielaff, A., Urbaniak, C., Mohan, G.B.M., Stepanov, V.G., Tran, Q., Wood, J. M., Minich, J., McDonald, D., Mayer, T., Knight, R., et al. (2019). Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7, 50.
Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890.
Chng, K.R., Li, C., Bertrand, D., Ng, A.H.Q., Kwah, J.S., Low, H.M., Tong, C., Natrajan, M., Zhang, M.H., Xu, L., et al. (2020). Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat Med 26, 941–951.
Debray, R., Herbert, R.A., Jaffe, A.L., Crits-Christoph, A., Power, M.E., and Koskella, B. (2022). Priority effects in microbiome assembly. Nat Rev Microbiol 20, 109–121.
DeLano, W.L. (2002). Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallography 40, 82–92.
Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 1–4.
Flores, P., McBride, S.A., Galazka, J.M., Varanasi, K.K., and Zea, L. (2023). Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces. npj Microgravity 9, 66.
Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.
Galperin, M.Y., Wolf, Y.I., Makarova, K.S., Vera Alvarez, R., Landsman, D., and Koonin, E.V. (2021). COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 49, D274–D281.
Gilbert, J.A., and Hartmann, E.M. (2024). The indoors microbiome and human health. Nat Rev Microbiol 22, 742–755.
Goldford, J.E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., Segrè, D., Mehta, P., and Sanchez, A. (2018). Emergent simplicity in microbial community assembly. Science 361, 469–474.
Guarnieri, V., Gaia, E., Battocchio, L., Pitzurra, M., Savino, A., Pasquarella, C., Vago, T., and Cotronei, V. (1997). New methods for microbial contamination monitoring: an experiment on board the mir orbital station. Acta Astronaut 40, 195–201.
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075.
Habibi, N., Uddin, S., Behbehani, M., Mustafa, A.S., Al-Fouzan, W., Al-Sarawi, H.A., Safar, H., Alatar, F., and Al Sawan, R.M.Z. (2024). Aerosol-mediated spread of antibiotic resistance genes: biomonitoring indoor and outdoor environments. Int J Environ Res Public Health 21, 983.
Hupka, M., Kedia, R., Schauer, R., Shepard, B., Granados-Presa, M., Vande Hei, M., Flores, P., and Zea, L. (2023). Morphology of Penicillium rubens biofilms formed in space. Life 13, 1001.
Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC BioInf 11, 1.
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9, 5114.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589.
Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780.
Khodadad, C.L.M., Oubre, C.M., Castro, V.A., Flint, S.M., Roman, M.C., Ott, C.M., Spern, C.J., Hummerick, M.E., Maldonado Vazquez, G.J., Birmele, M.N., et al. (2021). A microbial monitoring system demonstrated on the international space station provides a successful platform for detection of targeted microorganisms. Life 11, 492.
Kolmogorov, M., Bickhart, D.M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S.B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T.P.L., et al. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 17, 1103–1110.
Kuehnast, T., Abbott, C., Pausan, M.R., Pearce, D.A., Moissl-Eichinger, C., and Mahnert, A. (2022). The crewed journey to Mars and its implications for the human microbiome. Microbiome 10, 26.
Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., and von Mering, C. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11, e1004226.
Langdon, W.B. (2015). Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 8, 1–7.
Lemelle, L., Campagnolo, L., Mottin, E., Le Tourneau, D., Garre, E., Marcoux, P., Thévenot, C., Maillet, A., Barde, S., Teisseire, J., et al. (2020). Towards a passive limitation of particle surface contamination in the Columbus module (ISS) during the MATISS experiment of the Proxima Mission. npj Microgravity 6, 29.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.
Liao, C.T., Du, S.C., Lo, H.H., and Hsiao, Y.M. (2014). The galU gene of Xanthomonas campestris pv. campestris is involved in bacterial attachment, cell motility, polysaccharide synthesis, virulence, and tolerance to various stresses. Arch Microbiol 196, 729–738.
Liu, Q., Zhang, Q., Dang, L., Chen, N., Yin, Z., Ma, L., Feng, Y., Li, W., Wei, Y., Zhang, W., et al. (2024a). The interaction between Aspergillus brasiliensis and exposed copper circuits in the space microgravity environment. Corrosion Sci 234, 112132.
Liu, Q., Zhang, W., Yuan, J., Chen, N., Zhang, Q., Feng, Y., Yang, J., Lu, L., Zhao, X., Dong, C., et al. (2024b). Study on biodegradation of polyurethane coating on PCB by Aspergillus brasiliensis in space. Chem Eng J 490, 151514.
Lu, J., Breitwieser, F.P., Thielen, P., and Salzberg, S.L. (2017). Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci 3, e104.
Mikheenko, A., Saveliev, V., and Gurevich, A. (2016). MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090.
Milojevic, T., and Weckwerth, W. (2020). Molecular mechanisms of microbial survivability in outer space: a systems biology approach. Front Microbiol 11, 923.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., and Teeling, E. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37, 1530–1534.
Miyachiro, M.M., Contreras-Martel, C., and Dessen, A. (2019). Penicillin-binding proteins (PBPs) and bacterial cell wall elongation complexes. Subcellular Biochemistry 93, 273–289.
Mora, M., Wink, L., Kögler, I., Mahnert, A., Rettberg, P., Schwendner, P., Demets, R., Cockell, C., Alekhova, T., Klingl, A., et al. (2019). Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 10, 3990.
Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935.
Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017). metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834.
Ott, C.M., Bruce, R.J., and Pierson, D.L. (2004). Microbial characterization of free floating condensate aboard the Mir Space Station. Microb Ecol 47, 133–136.
Pavletić, B., Runzheimer, K., Siems, K., Koch, S., Cortesão, M., Ramos-Nascimento, A., and Moeller, R. (2022). Spaceflight virology: what do we know about viral threats in the spaceflight environment? Astrobiology 22, 210–224.
Price, M.N., Dehal, P.S., Arkin, A.P., and Poon, A.F.Y. (2010). FastTree 2 -approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596.
Raza, S., Kim, J., Sadowsky, M.J., and Unno, T. (2021). Microbial source tracking using metagenomics and other new technologies. J Microbiol 59, 259–269.
Schober, I., Koblitz, J., Sardà Carbasse, J., Ebeling, C., Schmidt, M.L., Podstawka, A., Gupta, R., Ilangovan, V., Chamanara, J., Overmann, J., et al. (2024). Bac Dive in 2025: the core database for prokaryotic strain data. Nucleic Acids Res 53, D748–D756.
Sengupta, P., Muthamilselvi Sivabalan, S.K., Singh, N.K., Raman, K., and Venkateswaran, K. (2024). Genomic, functional, and metabolic enhancements in multidrug-resistant Enterobacter bugandensis facilitating its persistence and succession in the International Space Station. Microbiome 12, 62.
Sharma, G., and Curtis, P.D. (2022). The impacts of microgravity on bacterial metabolism. Life 12, 774.
Simões, M.F., and Antunes, A. (2021). Microbial pathogenicity in space. Pathogens 10, 450.
Singh, N.K., Bezdan, D., Checinska Sielaff, A., Wheeler, K., Mason, C.E., and Venkateswaran, K. (2018). Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol 18, 175.
Singh, N.K., Wood, J.M., Patane, J., Moura, L.M.S., Lombardino, J., Setubal, J.C., and Venkateswaran, K. (2023). Characterization of metagenome-assembled genomes from the International Space Station. Microbiome 11, 125.
Szczepaniak, J., Press, C., and Kleanthous, C. (2020). The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 44, 490–506.
Tierney, B.T., Singh, N.K., Simpson, A.C., Hujer, A.M., Bonomo, R.A., Mason, C.E., and Venkateswaran, K. (2022). Multidrug-resistant Acinetobacter pittii is adapting to and exhibiting potential succession aboard the International Space Station. Microbiome 10, 210.
Truong, D.T., Tett, A., Pasolli, E., Huttenhower, C., and Segata, N. (2017). Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27, 626–638.
Turroni, S., Rampelli, S., Biagi, E., Consolandi, C., Severgnini, M., Peano, C., Quercia, S., Soverini, M., Carbonero, F.G., Bianconi, G., et al. (2017). Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5, 1.
Urbaniak, C., Lorenzi, H., Thissen, J., Jaing, C., Crucian, B., Sams, C., Pierson, D., Venkateswaran, K., and Mehta, S. (2020). The influence of spaceflight on the astronaut salivary microbiome and the search for a microbiome biomarker for viral reactivation. Microbiome 8, 1–4.
Urbaniak, C., Morrison, M.D., Thissen, J.B., Karouia, F., Smith, D.J., Mehta, S., Jaing, C., and Venkateswaran, K. (2022). Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10, 100.
Venkateswaran, K. (2017). Microbial characteristics of ISS environmental surfaces. In: 47th International Conference on Environmental Systems.
Wigley, D.B. (2013). Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11, 9–13.
Wood, D.E., Lu, J., and Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 1–3.
Xiao, N., Zhou, A., Kempher, M.L., Zhou, B.Y., Shi, Z.J., Yuan, M., Guo, X., Wu, L., Ning, D., Van Nostrand, J., et al. (2022). Disentangling direct from indirect relationships in association networks. Proc Natl Acad Sci USA 119, e2109995119.
Yang, J., Fu, Y., and Liu, H. (2022a). Microbiomes of air dust collected during the ground-based closed bioregenerative life support experiment “Lunar Palace 365”. Environ Microbiome 17, 4.
Yang, J., Hao, Z., Zhang, L., Fu, Y., and Liu, H. (2022b). Surface fungal diversity and several mycotoxin-related genes’ expression profiles during the Lunar Palace 365 experiment. Microbiome 10, 169.
Zea, L., McLean, R.J.C., Rook, T.A., Angle, G., Carter, D.L., Delegard, A., Denvir, A., Gerlach, R., Gorti, S., McIlwaine, D., et al. (2020). Potential biofilm control strategies for extended spaceflight missions. Biofilm 2, 100026.
Zhang, Y., Li, Z., Peng, Y., Guo, Z., Wang, H., Wei, T., Shakir, Y., Jiang, G., and Deng, Y. (2024). Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME Commun 4, ycae013.
Zhang, Y., Xin, C., Wang, X., and Deng, Y.L. (2020). Detection of microorganism from China’s spacecraft assembly cleanroom. Acta Astronaut 166, 545–547.
Acknowledgement
This work was supported by the China Space Station Engineering Aerospace Technology Experiment Program (2019HJS002), the general program of the National Natural Science Foundation of China (32170659) and China Agricultural University Young Talent Program in Life Science (006). We would like to extend our deepest gratitude to the China Manned Space Engineering Office for their invaluable support. We also appreciate the support of High-performance Computing Platform of China Agricultural University and Beijing Computing Center for providing computational resources.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Yuan, J., Yang, J., Sun, Y. et al. An early microbial landscape: inspiring endeavor from the China Space Station Habitation Area Microbiome Program (CHAMP). Sci. China Life Sci. (2025). https://doi.org/10.1007/s11427-024-2894-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11427-024-2894-2