Skip to main content
Log in

An early microbial landscape: inspiring endeavor from the China Space Station Habitation Area Microbiome Program (CHAMP)

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

China’s progressing space program, as evidenced by the formal operation of the China Space Station (CSS), has provided great opportunities for various space missions. Since microbes can present potential risks to human health and the normal operation of spacecraft, the study on space-microorganisms in the CSS is always a matter of urgency. In addition, the knowledge on the interactions between microorganisms, astronauts, and spacecraft equipment will shed light on our understanding of life activities in space and a closed environment. Here, we present the first comprehensive report on the microbial communities aboard the CSS based on the results of the first two survey missions of the CSS Habitation Area Microbiome Program (CHAMP). By combining metagenomic and cultivation methods, we have discovered that, in the early stage of the CSS, microbial communities are dominated by human-associated microbes, with strikingly large differences in both composition and functional diversity compared to those found on the International Space Station (ISS). While the samples from two missions of CHAMP possessed substantial differences in microbial composition, no significant difference in functional diversity was found, although signs of accumulating antibiotic resistance were evident. Meanwhile, strong bacteria co-occurrence was noted within the station’s microbiota. At the strain level, environmental isolates from the CSS exhibited numerous genomic mutations compared to those from the Assembly, Integration, and Test (AIT) center, potentially linked to the adaptation to the unique conditions of space. Besides, the intraspecies variation within four high-abundance species suggests possible propagation and residency effects between sampling sites. In summary, this study offers critical insights that not only advance our understanding of space microbiology but also lay the groundwork for effective microbial management in future long-term human space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and materials

The genomic sequences of 19 genomes in the present study have been deposited in the National Microbiology Data Center with accession numbers NMDCN0006IF5–NMDCN0006IFM. The metagenomic sequencing data of all 18 environmental samples has been deposited in the National Genomics Data Center under accession number PRJCA033252 and National Microbiology Data Center under accession number NMDC10019486.

References

  • Acres, J.M., Youngapelian, M.J., and Nadeau, J. (2021). The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. npj Microgravity 7, 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, A., Petkau, A., Syed, S.A., Tsang, K.K., et al. (2023). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 51, D690–D699.

    Article  CAS  PubMed  Google Scholar 

  • Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E. L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., et al. (2021). Pfam: the protein families database in 2021. Nucleic Acids Res 49, D412–D419.

    Article  CAS  PubMed  Google Scholar 

  • Be, N.A., Avila-Herrera, A., Allen, J.E., Singh, N., Checinska Sielaff, A., Jaing, C., and Venkateswaran, K. (2017). Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 5, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L.J., Thompson, K.N., Zolfo, M., Manghi, P., Dubois, L., Huang, K.D., Thomas, A.M., et al. (2023). Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 41, 1633–1644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryan, N.C., Christner, B.C., Guzik, T.G., Granger, D.J., and Stewart, M.F. (2019). Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J 13, 2789–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchfink, B., Reuter, K., and Drost, H.G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18, 366–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro, V.A., Thrasher, A.N., Healy, M., Ott, C.M., and Pierson, D.L. (2004). Microbial characterization during the early habitation of the international space station. Microb Ecol 47, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Checinska, A., Probst, A.J., Vaishampayan, P., White, J.R., Kumar, D., Stepanov, V.G., Fox, G.E., Nilsson, H.R., Pierson, D.L., Perry, J., et al. (2015). Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 3, 1–8.

    Article  Google Scholar 

  • Checinska Sielaff, A., Urbaniak, C., Mohan, G.B.M., Stepanov, V.G., Tran, Q., Wood, J. M., Minich, J., McDonald, D., Mayer, T., Knight, R., et al. (2019). Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7, 50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chng, K.R., Li, C., Bertrand, D., Ng, A.H.Q., Kwah, J.S., Low, H.M., Tong, C., Natrajan, M., Zhang, M.H., Xu, L., et al. (2020). Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat Med 26, 941–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debray, R., Herbert, R.A., Jaffe, A.L., Crits-Christoph, A., Power, M.E., and Koskella, B. (2022). Priority effects in microbiome assembly. Nat Rev Microbiol 20, 109–121.

    Article  CAS  PubMed  Google Scholar 

  • DeLano, W.L. (2002). Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallography 40, 82–92.

    Google Scholar 

  • Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 1–4.

    Article  Google Scholar 

  • Flores, P., McBride, S.A., Galazka, J.M., Varanasi, K.K., and Zea, L. (2023). Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces. npj Microgravity 9, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin, M.Y., Wolf, Y.I., Makarova, K.S., Vera Alvarez, R., Landsman, D., and Koonin, E.V. (2021). COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 49, D274–D281.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J.A., and Hartmann, E.M. (2024). The indoors microbiome and human health. Nat Rev Microbiol 22, 742–755.

    Article  CAS  PubMed  Google Scholar 

  • Goldford, J.E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., Segrè, D., Mehta, P., and Sanchez, A. (2018). Emergent simplicity in microbial community assembly. Science 361, 469–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri, V., Gaia, E., Battocchio, L., Pitzurra, M., Savino, A., Pasquarella, C., Vago, T., and Cotronei, V. (1997). New methods for microbial contamination monitoring: an experiment on board the mir orbital station. Acta Astronaut 40, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi, N., Uddin, S., Behbehani, M., Mustafa, A.S., Al-Fouzan, W., Al-Sarawi, H.A., Safar, H., Alatar, F., and Al Sawan, R.M.Z. (2024). Aerosol-mediated spread of antibiotic resistance genes: biomonitoring indoor and outdoor environments. Int J Environ Res Public Health 21, 983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hupka, M., Kedia, R., Schauer, R., Shepard, B., Granados-Presa, M., Vande Hei, M., Flores, P., and Zea, L. (2023). Morphology of Penicillium rubens biofilms formed in space. Life 13, 1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC BioInf 11, 1.

    Article  Google Scholar 

  • Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9, 5114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodadad, C.L.M., Oubre, C.M., Castro, V.A., Flint, S.M., Roman, M.C., Ott, C.M., Spern, C.J., Hummerick, M.E., Maldonado Vazquez, G.J., Birmele, M.N., et al. (2021). A microbial monitoring system demonstrated on the international space station provides a successful platform for detection of targeted microorganisms. Life 11, 492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmogorov, M., Bickhart, D.M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S.B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T.P.L., et al. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 17, 1103–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehnast, T., Abbott, C., Pausan, M.R., Pearce, D.A., Moissl-Eichinger, C., and Mahnert, A. (2022). The crewed journey to Mars and its implications for the human microbiome. Microbiome 10, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., and von Mering, C. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11, e1004226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langdon, W.B. (2015). Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 8, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemelle, L., Campagnolo, L., Mottin, E., Le Tourneau, D., Garre, E., Marcoux, P., Thévenot, C., Maillet, A., Barde, S., Teisseire, J., et al. (2020). Towards a passive limitation of particle surface contamination in the Columbus module (ISS) during the MATISS experiment of the Proxima Mission. npj Microgravity 6, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, C.T., Du, S.C., Lo, H.H., and Hsiao, Y.M. (2014). The galU gene of Xanthomonas campestris pv. campestris is involved in bacterial attachment, cell motility, polysaccharide synthesis, virulence, and tolerance to various stresses. Arch Microbiol 196, 729–738.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Zhang, Q., Dang, L., Chen, N., Yin, Z., Ma, L., Feng, Y., Li, W., Wei, Y., Zhang, W., et al. (2024a). The interaction between Aspergillus brasiliensis and exposed copper circuits in the space microgravity environment. Corrosion Sci 234, 112132.

    Article  CAS  Google Scholar 

  • Liu, Q., Zhang, W., Yuan, J., Chen, N., Zhang, Q., Feng, Y., Yang, J., Lu, L., Zhao, X., Dong, C., et al. (2024b). Study on biodegradation of polyurethane coating on PCB by Aspergillus brasiliensis in space. Chem Eng J 490, 151514.

    Article  CAS  Google Scholar 

  • Lu, J., Breitwieser, F.P., Thielen, P., and Salzberg, S.L. (2017). Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci 3, e104.

    Article  Google Scholar 

  • Mikheenko, A., Saveliev, V., and Gurevich, A. (2016). MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090.

    Article  CAS  PubMed  Google Scholar 

  • Milojevic, T., and Weckwerth, W. (2020). Molecular mechanisms of microbial survivability in outer space: a systems biology approach. Front Microbiol 11, 923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., and Teeling, E. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37, 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyachiro, M.M., Contreras-Martel, C., and Dessen, A. (2019). Penicillin-binding proteins (PBPs) and bacterial cell wall elongation complexes. Subcellular Biochemistry 93, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Mora, M., Wink, L., Kögler, I., Mahnert, A., Rettberg, P., Schwendner, P., Demets, R., Cockell, C., Alekhova, T., Klingl, A., et al. (2019). Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 10, 3990.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017). metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott, C.M., Bruce, R.J., and Pierson, D.L. (2004). Microbial characterization of free floating condensate aboard the Mir Space Station. Microb Ecol 47, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Pavletić, B., Runzheimer, K., Siems, K., Koch, S., Cortesão, M., Ramos-Nascimento, A., and Moeller, R. (2022). Spaceflight virology: what do we know about viral threats in the spaceflight environment? Astrobiology 22, 210–224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price, M.N., Dehal, P.S., Arkin, A.P., and Poon, A.F.Y. (2010). FastTree 2 -approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza, S., Kim, J., Sadowsky, M.J., and Unno, T. (2021). Microbial source tracking using metagenomics and other new technologies. J Microbiol 59, 259–269.

    Article  PubMed  Google Scholar 

  • Schober, I., Koblitz, J., Sardà Carbasse, J., Ebeling, C., Schmidt, M.L., Podstawka, A., Gupta, R., Ilangovan, V., Chamanara, J., Overmann, J., et al. (2024). Bac Dive in 2025: the core database for prokaryotic strain data. Nucleic Acids Res 53, D748–D756.

    Article  PubMed Central  Google Scholar 

  • Sengupta, P., Muthamilselvi Sivabalan, S.K., Singh, N.K., Raman, K., and Venkateswaran, K. (2024). Genomic, functional, and metabolic enhancements in multidrug-resistant Enterobacter bugandensis facilitating its persistence and succession in the International Space Station. Microbiome 12, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, G., and Curtis, P.D. (2022). The impacts of microgravity on bacterial metabolism. Life 12, 774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simões, M.F., and Antunes, A. (2021). Microbial pathogenicity in space. Pathogens 10, 450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, N.K., Bezdan, D., Checinska Sielaff, A., Wheeler, K., Mason, C.E., and Venkateswaran, K. (2018). Multi-drug resistant Enterobacter bugandensis species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol 18, 175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, N.K., Wood, J.M., Patane, J., Moura, L.M.S., Lombardino, J., Setubal, J.C., and Venkateswaran, K. (2023). Characterization of metagenome-assembled genomes from the International Space Station. Microbiome 11, 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepaniak, J., Press, C., and Kleanthous, C. (2020). The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 44, 490–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tierney, B.T., Singh, N.K., Simpson, A.C., Hujer, A.M., Bonomo, R.A., Mason, C.E., and Venkateswaran, K. (2022). Multidrug-resistant Acinetobacter pittii is adapting to and exhibiting potential succession aboard the International Space Station. Microbiome 10, 210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truong, D.T., Tett, A., Pasolli, E., Huttenhower, C., and Segata, N. (2017). Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27, 626–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turroni, S., Rampelli, S., Biagi, E., Consolandi, C., Severgnini, M., Peano, C., Quercia, S., Soverini, M., Carbonero, F.G., Bianconi, G., et al. (2017). Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5, 1.

    Article  Google Scholar 

  • Urbaniak, C., Lorenzi, H., Thissen, J., Jaing, C., Crucian, B., Sams, C., Pierson, D., Venkateswaran, K., and Mehta, S. (2020). The influence of spaceflight on the astronaut salivary microbiome and the search for a microbiome biomarker for viral reactivation. Microbiome 8, 1–4.

    Article  Google Scholar 

  • Urbaniak, C., Morrison, M.D., Thissen, J.B., Karouia, F., Smith, D.J., Mehta, S., Jaing, C., and Venkateswaran, K. (2022). Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10, 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateswaran, K. (2017). Microbial characteristics of ISS environmental surfaces. In: 47th International Conference on Environmental Systems.

    Google Scholar 

  • Wigley, D.B. (2013). Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11, 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D.E., Lu, J., and Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 1–3.

    Article  Google Scholar 

  • Xiao, N., Zhou, A., Kempher, M.L., Zhou, B.Y., Shi, Z.J., Yuan, M., Guo, X., Wu, L., Ning, D., Van Nostrand, J., et al. (2022). Disentangling direct from indirect relationships in association networks. Proc Natl Acad Sci USA 119, e2109995119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Fu, Y., and Liu, H. (2022a). Microbiomes of air dust collected during the ground-based closed bioregenerative life support experiment “Lunar Palace 365”. Environ Microbiome 17, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Hao, Z., Zhang, L., Fu, Y., and Liu, H. (2022b). Surface fungal diversity and several mycotoxin-related genes’ expression profiles during the Lunar Palace 365 experiment. Microbiome 10, 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zea, L., McLean, R.J.C., Rook, T.A., Angle, G., Carter, D.L., Delegard, A., Denvir, A., Gerlach, R., Gorti, S., McIlwaine, D., et al. (2020). Potential biofilm control strategies for extended spaceflight missions. Biofilm 2, 100026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Li, Z., Peng, Y., Guo, Z., Wang, H., Wei, T., Shakir, Y., Jiang, G., and Deng, Y. (2024). Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME Commun 4, ycae013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Xin, C., Wang, X., and Deng, Y.L. (2020). Detection of microorganism from China’s spacecraft assembly cleanroom. Acta Astronaut 166, 545–547.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the China Space Station Engineering Aerospace Technology Experiment Program (2019HJS002), the general program of the National Natural Science Foundation of China (32170659) and China Agricultural University Young Talent Program in Life Science (006). We would like to extend our deepest gratitude to the China Manned Space Engineering Office for their invaluable support. We also appreciate the support of High-performance Computing Platform of China Agricultural University and Beijing Computing Center for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Yin or Wenyu Shi.

Ethics declarations

The authors declare that they have no conflict of interest.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Yang, J., Sun, Y. et al. An early microbial landscape: inspiring endeavor from the China Space Station Habitation Area Microbiome Program (CHAMP). Sci. China Life Sci. (2025). https://doi.org/10.1007/s11427-024-2894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-024-2894-2