Skip to main content
Log in

Genetic regulation of m6A RNA methylation and its contribution in human complex diseases

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) has been established as the most prevalent chemical modification in message RNA (mRNA), playing an essential role in determining the fate of RNA molecules. Dysregulation of m6A has been revealed to lead to abnormal physiological conditions and cause various types of human diseases. Recent studies have delineated the genetic regulatory maps for m6A methylation by mapping the quantitative trait loci of m6A (m6A-QTLs), thereby building up the regulatory circuits linking genetic variants, m6A, and human complex traits. Here, we review the recent discoveries concerning the genetic regulatory maps of m6A, describing the methodological and technical details of m6A-QTL identification, and introducing the key findings of the cis- and trans-acting drivers of m6A. We further delve into the tissue- and ethnicity-specificity of m6A-QTL, the association with other molecular phenotypes in light of genetic regulation, the regulators underlying m6A genetics, and importantly, the functional roles of m6A in mediating human complex diseases. Lastly, we discuss potential research avenues that can accelerate the translation of m6A genetics studies toward the development of therapies for human genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguet, F., Brown, A.A., Castel, S.E., Davis, J.R., He, Y., Jo, B., et al. (2017). Genetic effects on gene expression across human tissues. Nature 550, 204–213.

    Article  Google Scholar 

  • Aguilo, F., Zhang, F., Sancho, A., Fidalgo, M., Di Cecilia, S., Vashisht, A., Lee, D.F., Chen, C.H., Rengasamy, M., Andino, B., et al. (2015). Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17, 689–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcón, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., Tavazoie, S.F. (2015). HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824–844.

    Article  CAS  PubMed  Google Scholar 

  • Arzumanian, V.A., Dolgalev, G.V., Kurbatov, I.Y., Kiseleva, O.I., and Poverennaya, E. V. (2022). Epitranscriptome: review of top 25 most-studied RNA modifications. Int J Mol Sci 23, 13851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millán-Zambrano, G., Robson, S.C., Aspris, D., Migliori, V., Bannister, A.J., Han, N., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yiangou, L., Kadiwala, J., Hubner, N.C., de los Mozos, I.R., Sadée, C., et al. (2018). The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555, 256–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boo, S.H., Ha, H., Lee, Y., Shin, M.-K., Lee, S., Kim, Y.K. (2022). UPF1 promotes rapid degradation of m6A-containing RNAs. Cell Rep 39, 110861.

    Article  CAS  PubMed  Google Scholar 

  • Cao, S., Zhu, H., Cui, J., Liu, S., Li, Y., Shi, J., Mo, J., Wang, Z., Wang, H., Hu, J., et al. (2023). Allele-specific RNA N6-methyladenosine modifications reveal functional genetic variants in human tissues. Genome Res 33, 1369–1380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chai, T., Tian, M., Yang, X., Qiu, Z., Lin, X., Chen, L. (2021). Genome-wide identification of RNA modifications for spontaneous coronary aortic dissection. Front Genet 12, 696562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin, S.J., Lue, C.M., Yu, M.T., and Bulinski, J.C. (1995). Differential expression of alternatively spliced forms of MAP4: a repertoire of structurally different microtubule-binding domains. Biochemistry 34, 2289–2301.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., Hao, Y.J., Zhang, Y., Li, M.M., Wang, M., Han, W., Wu, Y., Lv, Y., Hao, J., Wang, L., et al. (2015). m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, W., Wang, F., Feng, A., Li, X., Yu, W. (2020). CXXC5 attenuates pulmonary fibrosis in a bleomycin-induced mouse model and MLFs by suppression of the CD40/CD40L pathway. BioMed Res Int 2020, e7840652.

    Article  Google Scholar 

  • Connally, N.J., Nazeen, S., Lee, D., Shi, H., Stamatoyannopoulos, J., Chun, S., Cotsapas, C., Cassa, C.A., and Sunyaev, S.R. (2022). The missing link between genetic association and regulatory function. eLife 11, e74970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, S., Zhang, J., Su, J., Zuo, Z., Zeng, L., Liu, K., Zheng, Y., Huang, X., Bai, R., Zhuang, L., et al. (2022). RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet 54, 1427–1437.

    Article  CAS  PubMed  Google Scholar 

  • Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff Hepatoma cells. Proc Natl Acad Sci USA 71, 3971–3975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, M., Eggert, C., Kaplick, P.M., Eder, M., Röh, S., Tietze, L., Namendorf, C., Arloth, J., Weber, P., Rex-Haffner, M., et al. (2018). The Role of m6A/m-RNA methylation in stress response regulation. Neuron 99, 389–403.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eraslan, G., Avsec, Ž., Gagneur, J., and Theis, F.J. (2019). Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 20, 389–403.

    Article  CAS  PubMed  Google Scholar 

  • Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.R., Anttila, V., Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47, 1228–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, R., Ye, C., Peng, Y., Dai, Q., Zhao, Y., Liu, S., Wang, P., Hu, L., and He, C. (2023). m6A-SAC-seq for quantitative whole transcriptome m6A profiling. Nat Protoc 18, 626–657.

    Article  CAS  PubMed  Google Scholar 

  • Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R., et al. (2012). Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A.F., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015). m6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  • Grubert, F., Zaugg, J.B., Kasowski, M., Ursu, O., Spacek, D.V., Martin, A.R., Greenside, P., Srivas, R., Phanstiel, D.H., Pekowska, A., et al. (2015). Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162, 1051–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W.J.H., Jansen, R., de Geus, E.J.C., Boomsma, D.I., Wright, F.A., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48, 245–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, P.C., Wei, J., Dou, X., Harada, B.T., Zhang, Z., Ge, R., Liu, C., Zhang, L.S., Yu, X., Wang, S., et al. (2023). Exon architecture controls mRNA m6A suppression and gene expression. Science 379, 677–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holz, A., Mülsch, F., Schwarz, M.K., Hollmann, M., Döbrössy, M.D., Coenen, V.A., Bartos, M., Normann, C., Biber, K., van Calker, D., et al. (2019). Enhanced mGlu5 signaling in excitatory neurons promotes rapid antidepressant effects via AMPA receptor activation. Neuron 104, 338–352.e7.

    Article  CAS  PubMed  Google Scholar 

  • Hou, L., Xiong, X., Park, Y., Boix, C., James, B., Sun, N., He, L., Patel, A., Zhang, Z., Molinie, B., et al. (2023). Multitissue H3K27ac profiling of GTEx samples links epigenomic variation to disease. Nat Genet 55, 1665–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P.J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., Qi, M., Lu, Z., Shi, H., Wang, J., et al. (2017). Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27, 1115–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, D., Feng, X., Yang, H., Wang, J., Zhang, W., Fan, X., Dong, X., Chen, K., Yu, Y., Ma, X., et al. (2023). QTLbase2: an enhanced catalog of human quantitative trait loci on extensive molecular phenotypes. Nucleic Acids Res 51, D1122–D1128.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A., Liu, C., Yuan, C.L., et al. (2018). Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20, 285–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., Chen, Z., Deng, X., Xiao, G., Auer, F., et al. (2019). Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567, 414–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., et al. (2011). N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, N.K., Tang, Z., Toneyan, S., and Koo, P.K. (2023). EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations. Genome Biol 24, 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H.B., Tong, J., Zhu, S., Batista, P.J., Duffy, E.E., Zhao, J., Bailis, W., Cao, G., Kroehling, L., Chen, Y., et al. (2017a). m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Zhang, Q., Zhang, X., Zhang, J., Wang, X., Ren, J., Jia, J., Zhang, D., Jiang, X., Zhang, J., et al. (2018a). Microtubule associated protein 4 phosphorylation leads to pathological cardiac remodeling in mice. EBioMedicine 37, 221–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., Perez, S.P., Suganthan, R., He, C., Bjørås, M., et al. (2018b). Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol 19, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Xiong, X., and Yi, C. (2017b). Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14, 23–31.

    Article  CAS  Google Scholar 

  • Li, Y., Xia, L., Tan, K., Ye, X., Zuo, Z., Li, M., Xiao, R., Wang, Z., Liu, X., Deng, M., et al. (2020). N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52, 870–877.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Sun, H., Yi, Y., Shen, W., Li, K., Xiao, Y., Li, F., Li, Y., Hou, Y., Lu, B., et al. (2023). Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol 41, 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Long, E., Wan, P., Chen, Q., Lu, Z., Choi, J. (2023). From function to translation: decoding genetic susceptibility to human diseases via artificial intelligence. Cell Genomics 3, 100320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiser, N., Mench, N., and Hengesbach, M. (2020). RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3. Biol Chem 402, 89–98.

    Article  PubMed  Google Scholar 

  • Oliva, M., Demanelis, K., Lu, Y., Chernoff, M., Jasmine, F., Ahsan, H., Kibriya, M.G., Chen, L.S., and Pierce, B.L. (2023). DNA methylation QTL mapping across diverse human tissues provides molecular links between genetic variation and complex traits. Nat Genet 55, 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Paris, J., Morgan, M., Campos, J., Spencer, G.J., Shmakova, A., Ivanova, I., Mapperley, C., Lawson, H., Wotherspoon, D.A., Sepulveda, C., et al. (2019). Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25, 137–148.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil, D.P., Chen, C.K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M., and Jaffrey, S.R. (2016). m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24, 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, X., He, H., Huang, Y., Wang, J., and Xiao, Y. (2020). Genome-wide identification of m6A-associated single-nucleotide polymorphisms in Parkinson’s disease. Neurosci Lett 737, 135315.

    Article  CAS  PubMed  Google Scholar 

  • Roundtree, I.A., Luo, G.Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., Sha, J., Huang, X., Guerrero, L., Xie, P., et al. (2017). YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6, e31311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Růžička, K., Zhang, M., Campilho, A., Bodi, Z., Kashif, M., Saleh, M., Eeckhout, D., El-Showk, S., Li, H., Zhong, S., et al. (2017). Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol 215, 157–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shachar, R., Dierks, D., Garcia-Campos, M.A., Uzonyi, A., Toth, U., Rossmanith, W., and Schwartz, S. (2024). Dissecting the sequence and structural determinants guiding m6A deposition and evolution via inter- and intra-species hybrids. Genome Biol 25, 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H., Wang, X., Lu, Z., Zhao, B.S., Ma, H., Hsu, P.J., Liu, C., and He, C. (2017). YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27, 315–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slobodin, B., Han, R., Calderone, V., Vrielink, J.A.F.O., Loayza-Puch, F., Elkon, R., and Agami, R. (2017). Transcription impacts the efficiency of mRNA translation via cotranscriptional N6-adenosine methylation. Cell 169, 326–337.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollis, E., Mosaku, A., Abid, A., Buniello, A., Cerezo, M., Gil, L., Groza, T., Güneş, O., Hall, P., Hayhurst, J., et al. (2023). The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res 51, D977–D985.

    Article  CAS  PubMed  Google Scholar 

  • Stegle, O., Parts, L., Durbin, R., and Winn, J. (2010). A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol 6, e1000770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, H., Li, K., Liu, C., and Yi, C. (2023a). Regulation and functions of non-m6A mRNA modifications. Nat Rev Mol Cell Biol 24, 714–731.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T., Xu, Y., Xiang, Y., Ou, J., Soderblom, E.J., and Diao, Y. (2023b). Crosstalk between RNA m6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells. Nat Genet 55, 1324–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguet, F., Anand, S., Ardlie, K.G., Gabriel, S., Getz, G.A., Graubert, A., Hadley, K., Handsaker, R.E., Huang, K.H., Kashin, S., et al. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330.

    Article  CAS  Google Scholar 

  • Tian, J., Zhu, Y., Rao, M., Cai, Y., Lu, Z., Zou, D., Peng, X., Ying, P., Zhang, M., Niu, S., et al. (2020). N6-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression. Gut 69, 2180–2192.

    Article  CAS  PubMed  Google Scholar 

  • Toneyan, S., Tang, Z., and Koo, P.K. (2022). Evaluating deep learning for predicting epigenomic profiles. Nat Mach Intell 4, 1088–1100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uzonyi, A., Dierks, D., Nir, R., Kwon, O.S., Toth, U., Barbosa, I., Burel, C., Brandis, A., Rossmanith, W., Le Hir, H., et al. (2023). Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol Cell 83, 237–251.e7.

    Article  CAS  PubMed  Google Scholar 

  • Wan, Y., Qu, K., Zhang, Q.C., Flynn, R.A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R. C., Snyder, M.P., Segal, E., et al. (2014). Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Huang, D., Zhou, Y., Yao, H., Liu, H., Zhai, S., et al. (2020a). CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. Nucleic Acids Res 48, D807–D816.

    CAS  PubMed  Google Scholar 

  • Wang, J., Li, Y., Wang, P., Han, G., Zhang, T., Chang, J., Yin, R., Shan, Y., Wen, J., Xie, X., et al. (2020b). Leukemogenic chromatin alterations promote aml leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell 27, 81–97.e8.

    Article  PubMed  Google Scholar 

  • Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120.

    Article  PubMed  Google Scholar 

  • Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R.J., Zhang, Z., Ogawa, Y., Kellis, M., Duester, G., et al. (2018). N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 21, 195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T. J.C., van der Sluis, S., Andreassen, O.A., Neale, B.M., and Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51, 1339–1348.

    Article  CAS  PubMed  Google Scholar 

  • Wei, C.M., Gershowitz, A., and Moss, B. (1975). Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Wei, C.M., and Moss, B. (1977). Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676.

    Article  CAS  PubMed  Google Scholar 

  • Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., Jiao, F., Liu, H., Yang, P., Tan, L., et al. (2018). Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69, 1028–1038.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler, R., Gillis, E., Lasman, L., Safra, M., Geula, S., Soyris, C., Nachshon, A., Tai-Schmiedel, J., Friedman, N., Le-Trilling, V.T.K., et al. (2019). m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Chen, W., He, J., Jin, S., Liu, Y., Yi, Y., Gao, Z., Yang, J., Yang, J., Cui, J., et al. (2020). Interplay of m6 A and H3K27 trimethylation restrains inflammation during bacterial infection. Sci Adv 6, eaba0647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Z., Lin, W., Yuan, Q., Lyu, M. (2022). A genome-wide association analysis: m6A-SNP related to the onset of oral ulcers. Front Immunol 13, 931408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, W., Adhikari, S., Dahal, U., Chen, Y.S., Hao, Y.J., Sun, B.F., Sun, H.Y., Li, A., Ping, X.L., Lai, W.Y., et al. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell 61, 507–519.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Y.L., Liu, S., Ge, R., Wu, Y., He, C., Chen, M., and Tang, W. (2023). Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat Biotechnol 41, 993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, X., Hou, L., Park, Y.P., Molinie, B., Ardlie, K.G., Aguet, F., Gregory, R.I., and Kellis, M. (2021). Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet 53, 1156–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W., Li, J., He, C., Wen, J., Ma, H., Rong, B., Diao, J., Wang, L., Wang, J., Wu, F., et al. (2021). METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317–321.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Triboulet, R., Liu, Q., Sendinc, E., and Gregory, R.I. (2022). Exon junction complex shapes the m6A epitranscriptome. Nat Commun 13, 7904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, Y., Liu, J., Cui, X., Cao, J., Luo, G., Zhang, Z., Cheng, T., Gao, M., Shu, X., Ma, H., et al. (2018). VIRMA mediates preferential m6A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4, 1–7.

    Article  CAS  Google Scholar 

  • Zhang, S., Zhao, B.S., Zhou, A., Lin, K., Zheng, S., Lu, Z., Chen, Y., Sulman, E.P., Xie, K., Bögler, O., et al. (2017). m6A dDemethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Luo, K., Zou, Z., Qiu, M., Tian, J., Sieh, L., Shi, H., Zou, Y., Wang, G., Morrison, J., et al. (2020). Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet 52, 939–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18–29.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Li, X., Deng, S., Zhao, H., Ye, Y., Zhang, S., Huang, X., Bai, R., Zhuang, L., Zhou, Q., et al. (2023). CSTF2 mediated mRNA N6-methyladenosine modification drives pancreatic ductal adenocarcinoma m6A subtypes. Nat Commun 14, 6334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y., Nie, P., Peng, D., He, Z., Liu, M., Xie, Y., Miao, Y., Zuo, Z., and Ren, J. (2018). m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res 46, D139–D145.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Z., Huang, D., Wang, J., Zhao, K., Zhou, Y., Guo, Z., Zhai, S., Xu, H., Cui, H., Yao, H., et al. (2020). QTLbase: an integrative resource for quantitative trait loci across multiple human molecular phenotypes. Nucleic Acids Res 48, D983–D991.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the members of the Xiong Lab for the discussion. This work was supported by the National Natural Science Foundation of China (32370609 and 92353301 to X.X.), and funding from Liangzhu Laboratory at Zhejiang University and the State Key Laboratory of Transvascular Implantation Devices at Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xushen Xiong.

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Nan, J. & Xiong, X. Genetic regulation of m6A RNA methylation and its contribution in human complex diseases. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-024-2609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-024-2609-8

Navigation