Skip to main content
Log in

Plant regeneration in the new era: from molecular mechanisms to biotechnology applications

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., and Futsuhara, Y. (1986). Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theoret Appl Genet 72, 3–10.

    Article  CAS  Google Scholar 

  • Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50, 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  • Aichinger, E., Kornet, N., Friedrich, T., and Laux, T. (2012). Plant stem cell niches. Annu Rev Plant Biol 63, 615–636.

    Article  CAS  PubMed  Google Scholar 

  • Aichinger, E., Villar, C.B.R., Di Mambro, R., Sabatini, S., and Köhler, C. (2011). The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23, 1047–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y.S., Amasino, R., and Scheres, B. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., Abul-faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N.J., Voytas, D.F., et al. (2015). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8, 1288–1291.

    Article  CAS  PubMed  Google Scholar 

  • Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A., Brutnell, T.P., Citovsky, V., Conrad, L., Gelvin, S.B., Jackson, D., Kausch, A.P., et al. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • An, G. (1985). High efficiency transformation of cultured tobacco cells. Plant Physiol 79, 568–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjanappa, R.B., and Gruissem, W. (2021). Current progress and challenges in crop genetic transformation. J Plant Physiol 261, 153411.

    Article  CAS  PubMed  Google Scholar 

  • Argueso, C.T., Raines, T., and Kieber, J.J. (2010). Cytokinin signaling and transcriptional networks. Curr Opin Plant Biol 13, 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Asahina, M., Azuma, K., Pitaksaringkarn, W., Yamazaki, T., Mitsuda, N., Ohme-Takagi, M., Yamaguchi, S., Kamiya, Y., Okada, K., Nishimura, T., et al. (2011). Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci USA 108, 16128–16132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Rech, P., and Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57, 626–644.

    Article  CAS  PubMed  Google Scholar 

  • Bagchi, R., Melnyk, C.W., Christ, G., Winkler, M., Kirchsteiner, K., Salehin, M., Mergner, J., Niemeyer, M., Schwechheimer, C., Calderón Villalobos, L.I.A., et al. (2018). The Arabidopsis ALF4 protein is a regulator of SCFE3 ligases. EMBO J 37, 255–268.

    Article  CAS  PubMed  Google Scholar 

  • Bai, B., Su, Y.H., Yuan, J., and Zhang, X.S. (2013). Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6, 1247–1260.

    Article  CAS  PubMed  Google Scholar 

  • Banno, H., Ikeda, Y., Niu, Q.W., and Chua, N.H. (2001). Overexpression of ArabidopsisESR1 induces initiation of shoot regeneration. Plant Cell 13, 2609–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannoud, F., and Bellini, C. (2021). Adventitious rooting in Populus species: update and perspectives. Front Plant Sci 12, 668837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow, P. (1974). Regeneration of the cap of primary roots of Zea mays. New Phytol 73, 937–954.

    Article  CAS  Google Scholar 

  • Barrera-Rojas, C.H., Rocha, G.H.B., Polverari, L., Brito, D.A.P., Batista, D.S., Notini, M. M., da Cruz, A.C.F., Morea, E.G.O., Sabatini, S., Otoni, W.C., et al. (2019). miR156-targeted SPL10 controls root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. J Exp Bot 71, 934–950.

    Article  Google Scholar 

  • Becwar, M.R., Noland, T.L., and Wyckoff, J.L. (1989). Maturation, germination, and conversion of norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell Dev Biol 25, 575–580.

    Article  Google Scholar 

  • Berckmans, B., Vassileva, V., Schmid, S.P.C., Maes, S., Parizot, B., Naramoto, S., Magyar, Z., Kamei, C.L.A., Koncz, C., Bögre, L., et al. (2011). Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23, 3671–3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdowski, J.J.M., and Siepel, H. (1998). Vegetative regeneration of Calluna vulgaris at different ages and fertilizer levels. Biol Conserv 46, 85–93.

    Article  Google Scholar 

  • Berger, F., Haseloff, J., Schiefelbein, J., and Dolan, L. (1998). Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr Biol 8, 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum, K.D., and Alvarado, A.S. (2008). Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Liu, C.M., van Lammeren, A.A.M., Miki, B.L.A., et al. (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., et al. (2017). Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304.e15.

    Article  CAS  PubMed  Google Scholar 

  • Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619.

    Article  CAS  PubMed  Google Scholar 

  • Buechel, S., Leibfried, A., To, J.P.C., Zhao, Z., Andersen, S.U., Kieber, J.J., and Lohmann, J.U. (2010). Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. Eur J Cell Biol 89, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Busch, W., Miotk, A., Ariel, F.D., Zhao, Z., Forner, J., Daum, G., Suzaki, T., Schuster, C., Schultheiss, S.J., Leibfried, A., et al. (2010). Transcriptional control of a plant stem cell niche. Dev Cell 18, 841–853.

    Article  Google Scholar 

  • Bustillo-Avendaño, E., Ibáñez, S., Sanz, O., Sousa Barros, J.A., Gude, I., Perianez-Rodriguez, J., Micol, J.L., Del Pozo, J.C., Moreno-Risueno, M.A., and Pérez-Pérez, J. M. (2018). Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis. Plant Physiol 176, 1709–1727.

    Article  PubMed  Google Scholar 

  • Canher, B., Heyman, J., Savina, M., Devendran, A., Eekhout, T., Vercauteren, I., Prinsen, E., Matosevich, R., Xu, J., Mironova, V., et al. (2020). Rocks in the auxin stream: Wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proc Natl Acad Sci USA 117, 16667–16677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, X., Xie, H., Song, M., Lu, J., Ma, P., Huang, B., Wang, M., Tian, Y., Chen, F., Peng, J., et al. (2023). Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation 4, 100345.

    PubMed  Google Scholar 

  • Carneros, E., Sánchez-Muñoz, J., Pérez-Pérez, Y., Pintos, B., Gómez-Garay, A., and Testillano, P.S. (2023). Dynamics of endogenous auxin and its role in somatic embryogenesis induction and progression in cork oak. Plants 12, 1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes-Pérez, D., Ortega-García, A., Medina-Andrés, R., Batista-García, R.A., and Lira-Ruan, V. (2020). Exogenous nitric oxide delays plant regeneration from protoplast and protonema development in Physcomitrella patens. Plants 9, 1380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaikam, V., Molenaar, W., Melchinger, A.E., and Boddupalli, P.M. (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132, 3227–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.H., Sung, Z.R., and Goodrich, J. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263–5276.

    Article  CAS  PubMed  Google Scholar 

  • Chatfield, S.P., Capron, R., Severino, A., Penttila, P., Alfred, S., Nahal, H., and Provart, N.J. (2013). Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 73, 798–813.

    Article  CAS  PubMed  Google Scholar 

  • Che, P., Gingerich, D.J., Lall, S., and Howell, S.H. (2002). Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14, 2771–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che, P., Lall, S., and Howell, S.H. (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226, 1183–1194.

    Article  CAS  PubMed  Google Scholar 

  • Che, P., Lall, S., Nettleton, D., and Howell, S.H. (2006). Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141, 620–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Tong, J., Xiao, L., Ruan, Y., Liu, J., Zeng, M., Huang, H., Wang, J.W., and Xu, L. (2016a). YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. J Exp Bot 67, 4273–4284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Cheng, J., Chen, L., Zhang, G., Huang, H., Zhang, Y., and Xu, L. (2016b). Auxin-independent NAC pathway acts in response to explant-specific wounding and promotes root tip emergence during de novo root organogenesis in Arabidopsis. Plant Physiol 170, 2136–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Qu, Y., Sheng, L., Liu, J., Huang, H., and Xu, L. (2014). A simple method suitable to study de novo root organogenesis. Front Plant Sci 5, 208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Debernardi, J.M., Dubcovsky, J., and Gallavotti, A. (2022). Recent advances in crop transformation technologies. Nat Plants 8, 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115, 971–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y.J., Shang, G.D., Xu, Z.G., Yu, S., Wu, L.Y., Zhai, D., Tian, S.L., Gao, J., Wang, L., and Wang, J.W. (2021). Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. Proc Natl Acad Sci USA 118, e2115667118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Z.J., Wang, L., Sun, W., Zhang, Y., Zhou, C., Su, Y.H., Li, W., Sun, T.T., Zhao, X.Y., Li, X.G., et al. (2013). Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol 161, 240–251.

    Article  CAS  PubMed  Google Scholar 

  • Chou, J., Huang, J., and Huang, Y. (2020). Simple and efficient genetic transformation of sorghum using immature inflorescences. Acta Physiol Plant 42, 41.

    Article  Google Scholar 

  • Chupeau, M.C., Granier, F., Pichon, O., Renou, J.P., Gaudin, V., and Chupeau, Y. (2013). Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell 25, 2444–2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, S.E., Williams, R.W., and Meyerowitz, E.M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Clowes, F.A.L. (1972). Regulation of mitosis in roots by their caps. Nat New Biol 235, 143–144.

    Article  Google Scholar 

  • Cody, J.P., Maher, M.F., Nasti, R.A., Starker, C.G., Chamness, J.C., and Voytas, D.F. (2023). Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nat Protoc 18, 81–107.

    Article  CAS  PubMed  Google Scholar 

  • Cove, D.J., Perroud, P.F., Charron, A.J., McDaniel, S.F., Khandelwal, A., and Quatrano, R.S. (2009). Isolation and regeneration of protoplasts of the moss Physcomitrella patens. Cold Spring Harb Protoc 2009, pdb.prot5140.

    Article  PubMed  Google Scholar 

  • Cruz-Ramírez, A., Díaz-Triviño, S., Blilou, I., Grieneisen, V.A., Sozzani, R., Zamioudis, C., Miskolczi, P., Nieuwland, J., Benjamins, R., Dhonukshe, P., et al. (2012). A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150, 1002–1015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui, X., Lu, F., Qiu, Q., Zhou, B., Gu, L., Zhang, S., Kang, Y., Cui, X., Ma, X., Yao, Q., et al. (2016). REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat Genet 48, 694–699.

    Article  CAS  PubMed  Google Scholar 

  • Dai, X., Liu, Z., Qiao, M., Li, J., Li, S., and Xiang, F. (2017). ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression. J Integr Plant Biol 59, 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Damm, B., and Willmitzer, L. (1988). Regeneration of fertile plants from protoplasts of different Arabidopsis thaliana genotypes. Molec Gen Genet 213, 15–20.

    Article  Google Scholar 

  • Dang, W., and Wei, Z. (2007). An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173, 381–389.

    Article  CAS  Google Scholar 

  • de Klerk, G.J., van der Krieken, W., and de Jong, J.C. (1999). Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35, 189–199.

    Article  Google Scholar 

  • De Rybel, B., Mähönen, A.P., Helariutta, Y., and Weijers, D. (2016). Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • De Smet, I., Vassileva, V., De Rybel, B., Levesque, M.P., Grunewald, W., Van Damme, D., Van Noorden, G., Naudts, M., Van Isterdael, G., De Clercq, R., et al. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594–597.

    Article  CAS  PubMed  Google Scholar 

  • Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., and Dubcovsky, J. (2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38, 1274–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar, U., and Joshi, M. (2005). Efficient plant regeneration protocol through callus for Saussurea obvallata (DC.) Edgew. (Asteraceae): effect of explant type, age and plant growth regulators. Plant Cell Rep 24, 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Dob, A., Lakehal, A., Novak, O., and Bellini, C. (2021). Jasmonate inhibits adventitious root initiation through repression of CKX1 and activation of RAP2.6L transcription factor in Arabidopsis. J Exp Bot 72, 7107–7118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., and Scheres, B. (1993). Cellular organisation of the Arabidopsis thaliana root. Development 119, 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus, T., and Jürgens, G. (2021). Comparative embryogenesis in angiosperms: activation and patterning of embryonic cell lineages. Annu Rev Plant Biol 72, 641–676.

    Article  CAS  PubMed  Google Scholar 

  • Druege, U., Franken, P., and Hajirezaei, M.R. (2016). Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7, 381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Druege, U., Hilo, A., Pérez-Pérez, J.M., Klopotek, Y., Acosta, M., Shahinnia, F., Zerche, S., Franken, P., and Hajirezaei, M.R. (2019). Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann Bot 123, 929–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duclercq, J., Sangwan-Norreel, B., Catterou, M., and Sangwan, R.S. (2010). De novo shoot organogenesis: from art to science. Trends Plant Sci 16, 597–606.

    Article  Google Scholar 

  • Durgaprasad, K., Roy, M.V., Venugopal M., A., Kareem, A., Raj, K., Willemsen, V., Mähönen, A.P., Scheres, B., and Prasad, K. (2019). Gradient expression of transcription factor imposes a boundary on organ regeneration potential in plants. Cell Rep 29, 453–463.e3.

    Article  CAS  PubMed  Google Scholar 

  • Efroni, I., Mello, A., Nawy, T., Ip, P.L., Rahni, R., DelRose, N., Powers, A., Satija, R., and Birnbaum, K.D. (2016). Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hennawy, M.A., Abdalla, A.F., Shafey, S.A., and Al-Ashkar, I.M. (2011). Production of doubled haploid wheat lines (Triticum aestivum L.) using anther culture technique. Ann Agric Sci 56, 63–72.

    Article  Google Scholar 

  • Ellison, E.E., Nagalakshmi, U., Gamo, M.E., Huang, P., Dinesh-Kumar, S., and Voytas, D.F. (2020). Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants 6, 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Eshed Williams, L. (2021). Genetics of shoot meristem and shoot regeneration. Annu Rev Genet 55, 661–681.

    Article  CAS  PubMed  Google Scholar 

  • Fan, M., Xu, C., Xu, K., and Hu, Y. (2012). LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22, 1169–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehér, A. (2015). Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849, 385–402.

    Article  PubMed  Google Scholar 

  • Feldman, L.J. (1976). The de novo origin of the quiescent center regenerating root apices of Zea mays. Planta 128, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Sandoval, E., Eklund, D.M., Hong, S., Alvarez, J.P., Fisher, T.J., Lampugnani, E. R., Golz, J.F., Vázquez-Lobo, A., Dierschke, T., Lin, S., et al. (2018). Class CARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol 218, 1612–1630.

    Article  CAS  PubMed  Google Scholar 

  • Fulcher, N., and Sablowski, R. (2009). Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci USA 106, 20984–20988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta, K., Kubo, M., Sano, K., Demura, T., Fukuda, H., Liu, Y.G., Shibata, D., and Kakimoto, T. (2011). The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol 52, 618–628.

    Article  CAS  PubMed  Google Scholar 

  • Gaj, M.D. (2004). Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43, 27–47.

    Article  CAS  Google Scholar 

  • Gaj, M.D. (2011). Somatic embryogenesis and plant regeneration in the culture of Arabidopsis thaliana (L.) Heynh. Immature zygotic embryos. In: Thorpe, T., and Yeung, E., eds. Plant Embryo Culture. Methods in Molecular Biology. New York: Humana Press. 257–265.

    Chapter  Google Scholar 

  • Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., and Scheres, B. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  • Gallois, J.L., Nora, F.R., Mizukami, Y., and Sablowski, R. (2004). WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18, 375–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, C. (2021). Genome engineering for crop improvement and future agriculture. 184, 1621–1635.

    CAS  Google Scholar 

  • Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M., and McCourt, P. (2004). The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7, 373–385.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Q., Ilves, H., Dallas, A., Kumar, P., Shorenstein, J., Kazakov, S.A., and Johnston, B. H. (2010). Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16, 106–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, Y., Yan, A., and Zhou, Y. (2022). Positional cues and cell division dynamics drive meristem development and archegonium formation in Ceratopteris gametophytes. Commun Biol 5, 650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George, E.F. (1984). Plant Propagation by Tissue Culture: Handbook and Directory of Commercial Laboratories Hants: Exegetics Limited.

  • Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., and Coupland, G. (1997). A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., and Meyerowitz, E.M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539–3548.

    Article  CAS  PubMed  Google Scholar 

  • Greb, T., and Lohmann, J.U. (2016). Plant stem cells. Curr Biol 26, R816–R821.

    Article  CAS  PubMed  Google Scholar 

  • Gu, N., Tamada, Y., Imai, A., Palfalvi, G., Kabeya, Y., Shigenobu, S., Ishikawa, M., Angelis, K.J., Chen, C., and Hasebe, M. (2020). DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nat Plants 6, 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  • Guo, F., Wang, H., Lian, G., Cai, G., Liu, W., Zhang, H., Li, D., Zhou, C., Han, N., Zhu, M., et al. (2023). Initiation of scutellum-derived callus is regulated by an embryolike developmental pathway in rice. Commun Biol 6, 457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberlandt, G. (1902a). Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber Mat Nat Kl Kais Akad Wiss Wien, 69–92.

  • Haberlandt, G. (1902b). Kulturversuche mit isolierten pflanzenzellen. Sber Akad Wiss Wein 111, 69–92.

    Google Scholar 

  • Haecker, A., Groß-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668.

    Article  CAS  PubMed  Google Scholar 

  • Hakman, I., Hallberg, H., and Palovaara, J. (2009). The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29, 483–496.

    Article  CAS  PubMed  Google Scholar 

  • Hakman, I., and von Arnold, S. (1988). Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (White spruce). Physiol Plant 72, 579–587.

    Article  CAS  Google Scholar 

  • Hamada, H., Liu, Y., Nagira, Y., Miki, R., Taoka, N., and Imai, R. (2018). Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci Rep 8, 14422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, Y., Broughton, S., Liu, L., Zhang, X.Q., Zeng, J., He, X., and Li, C. (2021). Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Commun 2, 100082.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Z., Wu, H., Zheng, R., Li, R., Zhu, Z., Chen, Y., Lu, Y., Cheng, T., Shi, J., and Chen, J. (2023). The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. Plant J 113, 716–733.

    Article  CAS  PubMed  Google Scholar 

  • Harada, M., Oda, M., Mori, G., and Ikeda, H. (2005). Mass regeneration of shoots from cut surfaces of stems in tomato stock plants. J Jpn Soc Hort Sci 74, 479–481.

    Article  Google Scholar 

  • Harding, E.W., Tang, W., Nichols, K.W., Fernandez, D.E., and Perry, S.E. (2003). Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133, 653–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havrlentová, M., Faragó, J., and Nešťáková, M. (2001). Regeneration of immature inflorescences of barley in vitro. Biol Plant 44, 157–159.

    Article  Google Scholar 

  • Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N., and Harwood, W.A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, C., Chen, X., Huang, H., and Xu, L. (2012). Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 8, e1002911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidstra, R., and Sabatini, S. (2014). Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15, 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Coronado, M., Dias Araujo, P.C., Ip, P.L., Nunes, C.O., Rahni, R., Wudick, M.M., Lizzio, M.A., Feijó, J.A., and Birnbaum, K.D. (2022). Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev Cell 57, 451–465.e6.

    Article  PubMed  Google Scholar 

  • Heyman, J., Cools, T., Canher, B., Shavialenka, S., Traas, J., Vercauteren, I., Van den Daele, H., Persiau, G., De Jaeger, G., Sugimoto, K., et al. (2016). The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nat Plants 2, 16165.

    Article  CAS  PubMed  Google Scholar 

  • Heyman, J., Cools, T., Vandenbussche, F., Heyndrickx, K.S., Van Leene, J., Vercauteren, I., Vanderauwera, S., Vandepoele, K., De Jaeger, G., Van Der Straeten, D., et al. (2013). ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342, 860–863.

    Article  CAS  PubMed  Google Scholar 

  • Hoermayer, L., and Friml, J. (2019). Targeted cell ablation-based insights into wound healing and restorative patterning. Curr Opin Plant Biol 52, 124–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoermayer, L., Montesinos, J.C., Marhava, P., Benková, E., Yoshida, S., and Friml, J. (2020). Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proc Natl Acad Sci USA 117, 15322–15331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, J.H., Savina, M., Du, J., Devendran, A., Kannivadi Ramakanth, K., Tian, X., Sim, W.S., Mironova, V.V., and Xu, J. (2017). A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170, 102–113.e14.

    Article  CAS  PubMed  Google Scholar 

  • Hooke, R.L. (1665). Micrographia: or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. London: J. Martyn and J. Allestry.

    Google Scholar 

  • Horstman, A., Bemer, M., and Boutilier, K. (2017a). A transcriptional view on somatic embryogenesis. Regeneration 4, 201–216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horstman, A., Li, M., Heidmann, I., Weemen, M., Chen, B., Muino, J.M., Angenent, G. C., and Boutilier, K. (2017b). The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175, 848–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, S., Liu, Z., Shen, H., and Wu, D. (2019). Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci 10, 646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, X., and Xu, L. (2016). Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol 172, 2363–2373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, A., Wang, Y., Liu, Y., Wang, G., and She, X. (2020). Reactive oxygen species regulate auxin levels to mediate adventitious root induction in Arabidopsis hypocotyl cuttings. J Integr Plant Biol 62, 912–926.

    Article  CAS  PubMed  Google Scholar 

  • Hyun, Y., Richter, R., and Coupland, G. (2017). Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiol 173, 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez, S., Carneros, E., Testillano, P.S., and Pérez-Pérez, J.M. (2020). Advances in plant regeneration: shake, rattle and roll. Plants 9, 897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda-Iwai, M., Satoh, S., and Kamada, H. (2002). Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53, 1575–1580.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda-Iwai, M., Umehara, M., Satoh, S., and Kamada, H. (2003). Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34, 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Favero, D.S., Sakamoto, Y., Iwase, A., Coleman, D., Rymen, B., and Sugimoto, K. (2019). Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70, 377–406.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Iwase, A., Ito, T., Tanaka, H., Favero, D.S., Kawamura, A., Sakamoto, S., Wakazaki, M., Tameshige, T., Fujii, H., et al. (2022). Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiol 188, 425–441.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Iwase, A., Rymen, B., Harashima, H., Shibata, M., Ohnuma, M., Breuer, C., Morao, A.K., de Lucas, M., De Veylder, L., et al. (2015). PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants 1, 15089.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Ogawa, Y., Iwase, A., and Sugimoto, K. (2016). Plant regeneration: cellular origins and molecular mechanisms. Development 143, 1442–1451.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Rymen, B., and Sugimoto, K. (2020). How do plants transduce wound signals to induce tissue repair and organ regeneration? Curr Opin Plant Biol 57, 72–77.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi, M., Shibata, M., Rymen, B., Iwase, A., Bågman, A.M., Watt, L., Coleman, D., Favero, D.S., Takahashi, T., Ahnert, S.E., et al. (2018). A gene regulatory network for cellular reprogramming in plant regeneration. Plant Cell Physiol 59, 770–782.

    Article  CAS  PubMed Central  Google Scholar 

  • Ikeuchi, M., Sugimoto, K., and Iwase, A. (2013). Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159–3173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai, R., Hamada, H., Liu, Y., Linghu, Q., Kumagai, Y., Nagira, Y., Miki, R., and Taoka, N. (2020). In planta particle bombardment (iPB): a new method for plant transformation and genome editing. Plant Biotechnol 37, 171–176.

    Article  CAS  Google Scholar 

  • Ishida, K., Yamashino, T., Yokoyama, A., and Mizuno, T. (2008). Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49, 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, S., Suzuki, H., Iwaki, A., Kawamura, S., Yamaoka, S., Kojima, M., Takebayashi, Y., Yamaguchi, K., Shigenobu, S., Sakakibara, H., et al. (2022). Diminished auxin signaling triggers cellular reprogramming by inducing a regeneration factor in the liverwort Marchantia polymorpha. Plant Cell Physiol 63, 384–400.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, Y., Hiei, Y., and Komari, T. (2007). Agrobacterium-mediated transformation of maize. Nat Protoc 2, 1614–1621.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14, 745–750.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, Y., Tsunashima, M., Hiei, Y., and Komari, T. (2015). Wheat (Triticum aestivum L.) transformation using immature embryos. In: Wang, K., ed. Agrobacterium Protocols. Methods in Molecular Biology. New York: Springer. 189–198.

    Chapter  Google Scholar 

  • Ishikawa, M., and Hasebe, M. (2015). Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. J Plant Res 128, 399–405.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, M., and Hasebe, M. (2022). Molecular mechanisms of reprogramming of differentiated cells into stem cells in the moss Physcomitrium patens. Curr Opin Plant Biol 65, 102123.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, M., Morishita, M., Higuchi, Y., Ichikawa, S., Ishikawa, T., Nishiyama, T., Kabeya, Y., Hiwatashi, Y., Kurata, T., Kubo, M., et al. (2019). Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming. Nat Plants 5, 681–690.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, M., Murata, T., Sato, Y., Nishiyama, T., Hiwatashi, Y., Imai, A., Kimura, M., Sugimoto, N., Akita, A., Oguri, Y., et al. (2011). Physcomitrella cyclin-dependent kinase A links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell 23, 2924–2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, J., Fukaki, H., Onoda, M., Li, L., Li, C., Tasaka, M., and Furutani, M. (2016). Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc Natl Acad Sci USA 113, 6562–6567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase, A., Harashima, H., Ikeuchi, M., Rymen, B., Ohnuma, M., Komaki, S., Morohashi, K., Kurata, T., Nakata, M., Ohme-Takagi, M., et al. (2017). WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29, 54–69.

    Article  CAS  PubMed  Google Scholar 

  • Iwase, A., Kondo, Y., Laohavisit, A., Takebayashi, A., Ikeuchi, M., Matsuoka, K., Asahina, M., Mitsuda, N., Shirasu, K., Fukuda, H., et al. (2021). WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytol 232, 734–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K., et al. (2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21, 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Janocha, D., and Lohmann, J.U. (2018). From signals to stem cells and back again. Curr Opin Plant Biol 45, 136–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins, G.I., and Cove, D.J. (1983). Light requirements for regeneration of protoplasts of the moss Physcomitrella patens. Planta 157, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S., Palmer, T.M., and Lukowitz, W. (2011). The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr Biol 21, 1268–1276.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, V.M., Guevara, E., Herrera, J., and Bangerth, F. (2005). Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis. Plant Cell Rep 23, 567–572.

    Article  PubMed  Google Scholar 

  • Kamada, H., and Harada, H. (1979). Studies on the organogenesis in carrot tissue cultures I. Effects of growth regulators on somatic embryogenesis and root formation. Z für Pflanzenphysiol 91, 255–266.

    Article  CAS  Google Scholar 

  • Kanne, J.V., Ishikawa, M., Bressendorff, S., Ansbøl, J., Hasebe, M., Rodriguez, E., and Petersen, M. (2022). Overexpression of ATG8/LC3 enhances wound-induced somatic reprogramming in Physcomitrium patens. Autophagy 18, 1463–1466.

    Article  CAS  PubMed  Google Scholar 

  • Kareem, A., Durgaprasad, K., Sugimoto, K., Du, Y., Pulianmackal, A.J., Trivedi, Z.B., Abhayadev, P.V., Pinon, V., Meyerowitz, E.M., Scheres, B., et al. (2015). PLETHORA genes control regeneration by a two-step mechanism. Curr Biol 25, 1017–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartsonas, E., and Papafotiou, M. (2007). Mother plant age and seasonal influence on in vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece. Plant Cell Tiss Organ Cult 90, 111–116.

    Article  CAS  Google Scholar 

  • Kato, H., and Takeuchi, M. (1963). Morphogenesis in vitro starting from single cells of carrot root. Plant Cell Physiol 4, 243–245.

    Google Scholar 

  • Kavas, M., Öktem, H.A., and Yücel, M. (2008). Factors affecting plant regeneration from immature inflorescence of two winter wheat cultivars. Biol Plant 52, 621–626.

    Article  Google Scholar 

  • Kawakatsu, Y., Sawai, Y., Kurotani, K., Shiratake, K., and Notaguchi, M. (2020). An in vitro grafting method to quantify mechanical forces of adhering tissues. Plant Biotechnol 37, 451–458.

    Article  CAS  Google Scholar 

  • Khanday, I., Santos-Medellín, C., and Sundaresan, V. (2023). Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes. New Phytol 238, 673–687.

    Article  CAS  PubMed  Google Scholar 

  • Kidwai, M., Mishra, P., and Bellini, C. (2023). Species-specific transcriptional reprogramming during adventitious root initiation. Trends Plant Sci 28, 128–130.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Yang, W., Forner, J., Lohmann, J.U., Noh, B., and Noh, Y. (2018). Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis. EMBO J 37, e98726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S.Y., Lee, J., Eshed-Williams, L., Zilberman, D., and Sung, Z.R. (2012). EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet 8, e1002512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klocke, E., Nothnagel, T., and Schumann, G. (2010). Vegetables. In: Kempken, F., and Jung, C., eds. Genetic Modification of Plants. Biotechnology in Agriculture and Forestry. Berlin, Heidelberg: Springer. 499–550.

    Chapter  Google Scholar 

  • Kong, X., Liu, G., Liu, J., and Ding, Z. (2018). The root transition zone: a hot spot for signal crosstalk. Trends Plant Sci 23, 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Krizek, B.A., and Eaddy, M. (2011). AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers. Plant Mol Biol 78, 199–209.

    Article  PubMed  Google Scholar 

  • Kroj, T., Savino, G., Valon, C., Giraudat, J., and Parcy, F. (2003). Regulation of storage protein gene expression in Arabidopsis. Development 130, 6065–6073.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, A., Ishizaki, K., Hosaka, M., and Kohchi, T. (2013). Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77, 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Kujur, S., Senthil-Kumar, M., and Kumar, R. (2021). Plant viral vectors: expanding the possibilities of precise gene editing in plant genomes. Plant Cell Rep 40, 931–934.

    Article  CAS  PubMed  Google Scholar 

  • Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D., and Loerz, H. (2006). Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4, 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Kwong, R.W., Bui, A.Q., Lee, H., Kwong, L.W., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (2003). LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15, 5–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze, L., Parizot, B., Baker, A., Ricaud, L., Martinière, A., Auguy, F., Franche, C., Nussaume, L., Bogusz, D., and Haseloff, J. (2005). GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56, 2433–2442.

    Article  CAS  PubMed  Google Scholar 

  • Lardon, R., and Geelen, D. (2020). Natural variation in plant pluripotency and regeneration. Plants 9, 1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lardon, R., Wijnker, E., Keurentjes, J., and Geelen, D. (2020). The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun Biol 3, 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K., Park, O.S., and Seo, P.J. (2017). Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. Sci Signal 10, eaan0316.

    Article  PubMed  Google Scholar 

  • Lee, K., Park, O., and Seo, P.J. (2018). JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J 95, 961–975.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.H., Lee, J., Jie, E.Y., Choi, S.H., Jiang, L., Ahn, W.S., Kim, C.Y., and Kim, S.W. (2020). Temporal and spatial expression analysis of shoot-regeneration regulatory genes during the adventitious shoot formation in hypocotyl and cotyledon explants of tomato (CV. Micro-Tom). Int J Mol Sci 21, 5309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibfried, A., To, J.P.C., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Gu, L., Gao, L., Chen, C., Wei, C.Q., Qiu, Q., Chien, C.W., Wang, S., Jiang, L., Ai, L.F., et al. (2016). Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48, 687–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Sako, Y., Imai, A., Nishiyama, T., Thompson, K., Kubo, M., Hiwatashi, Y., Kabeya, Y., Karlson, D., Wu, S.H., et al. (2017). A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nat Commun 8, 14242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Yao, L., Sun, L., and Zhu, Z. (2020). ETHYLENE INSENSITIVE 3 suppresses plants de novo root regeneration from leaf explants and mediates age-regulated regeneration decline. Development 147, dev179457.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhang, J., Jia, H., Liu, B., Sun, P., Hu, J., Wang, L., and Lu, M. (2018). The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar. Tree Physiol 38, 139–153.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Hu, J., Sun, Y., Li, B., Zhang, D., Li, W., Liu, J., Li, D., Gao, C., Zhang, Y., et al. (2021). Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant 14, 1787–1798.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Liu, H., Cheng, Z.J., Su, Y.H., Han, H.N., Zhang, Y., and Zhang, X.S. (2011). DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7, e1002243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Y., Heyman, J., Xiang, Y., Vandendriessche, W., Canher, B., Goeminne, G., and De Veylder, L. (2022). The wound-activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loop. Sci Adv 8, eabo7737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, R.Y., and Wang, J.W. (2023). Analysis of meristems and plant regeneration at single-cell resolution. Curr Opin Plant Biol 74, 102378.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C., Hsu, C., Yang, L., Lee, L., Fu, J., Cheng, Q., Wu, F., Hsiao, H.C., Zhang, Y., Zhang, R., et al. (2018). Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16, 1295–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C.S., Hsu, C.T., Yuan, Y.H., Zheng, P.X., Wu, F.H., Cheng, Q.W., Wu, Y.L., Wu, T. L., Lin, S., Yue, J.J., et al. (2022). DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. Plant Physiol 188, 1917–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Wang, L., Zhang, J., Li, J., Zheng, H., Chen, J., and Lu, M. (2014a). WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics 15, 296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Jiang, C., Chen, T., Zha, L., Zhang, J., and Huang, L. (2019). Identification and 3D gene expression patterns of WUSCEHEL-related homeobox (WOX) genes from Panax ginseng. Plant Physiol Biochem 143, 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., and Xu, L. (2014b). WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26, 1081–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Zhao, C., Sun, K., Deng, Y., and Li, Z. (2023a). Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Mol Plant 16, 616–631.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Zhang, Y., Fang, X., Tran, S., Zhai, N., Yang, Z., Guo, F., Chen, L., Yu, J., Ison, M.S., et al. (2022). Transcriptional landscapes of de novo root regeneration from detached Arabidopsis leaves revealed by time-lapse and single-cell RNA sequencing analyses. Plant Commun 3, 100306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Bie, X.M., Lin, X., Li, M., Wang, H., Zhang, X., Yang, Y., Zhang, C., Zhang, X. S., and Xiao, J. (2023b). Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat Plants 9, 908–925.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Zhu, K., and Xiao, J. (2023c). Recent advances in understanding of the epigenetic regulation of plant regeneration. aBIOTECH 4, 31–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Dai, X., Li, J., Liu, N., Liu, X., Li, S., and Xiang, F. (2020). The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis. Plant Cell 32, 2271–2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, Y., Yang, Y., Ge, F., Pan, G., and Shen, Y. (2020). Establishment of a maize callus regeneration system from haploid shoot tips. Plant Cell Tiss Organ Cult 141, 583–592.

    Article  CAS  Google Scholar 

  • Long, Y., Yang, Y., Pan, G., and Shen, Y. (2022). New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13, 926752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotan, T., Ohto, M., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (1998). Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, K., La Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., and Gordon-Kamm, W. (2018). Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant 54, 240–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., et al. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, C., and Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27, 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Lu, F., Cui, X., Zhang, S., Jenuwein, T., and Cao, X. (2011). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43, 715–719.

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., Holt, A., Chen, X., Liu, Y., Knauer, S., Tucker, E.J., Sarkar, A.K., Hao, Z., Roodbarkelari, F., Shi, J., et al. (2023). miR394 enhances WUSCHEL-induced somatic embryogenesis in Arabidopsis thaliana. New Phytol 238, 1059–1072.

    Article  CAS  PubMed  Google Scholar 

  • Luo, W., Tan, J., Li, T., Feng, Z., Ding, Z., Xie, X., Chen, Y., Chen, L., Liu, Y.G., Zhu, Q., et al. (2023). Overexpression of maize GOLDEN2 in rice and maize calli improves regeneration by activating chloroplast development. Sci China Life Sci 66, 340–349.

    Article  CAS  PubMed  Google Scholar 

  • Lv, Z., Jiang, R., Chen, J., and Chen, W. (2020). Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J 104, 880–891.

    Article  CAS  PubMed  Google Scholar 

  • Maffei, M.E., Mithöfer, A., and Boland, W. (2007). Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12, 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Maher, M.F., Nasti, R.A., Vollbrecht, M., Starker, C.G., Clark, M.D., and Voytas, D.F. (2020). Plant gene editing through de novo induction of meristems. Nat Biotechnol 38, 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Mao, J., Niu, C., Li, K., Chen, S., Tahir, M.M., Han, M., and Zhang, D. (2020). Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biol 20, 536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, J., Niu, C., Li, K., Fan, L., Liu, Z., Li, S., Ma, D., Tahir, M.M., Xing, L., Zhao, C., et al. (2023). Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. Plant Cell 35, 1202–1221.

    Article  PubMed  Google Scholar 

  • Marhava, P., Hoermayer, L., Yoshida, S., Marhavý, P., Benková, E., and Friml, J. (2019). Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell 177, 957–969.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason, M.G., Mathews, D.E., Argyros, D.A., Maxwell, B.B., Kieber, J.J., Alonso, J.M., Ecker, J.R., and Schaller, G.E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17, 3007–3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew, M.M., and Prasad, K. (2021). Model systems for regeneration: Arabidopsis. Development 148, dev195347.

    Article  CAS  PubMed  Google Scholar 

  • Matosevich, R., Cohen, I., Gil-Yarom, N., Modrego, A., Friedlander-Shani, L., Verna, C., Scarpella, E., and Efroni, I. (2020). Local auxin biosynthesis is required for root regeneration after wounding. Nat Plants 6, 1020–1030.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815.

    Article  CAS  PubMed  Google Scholar 

  • Meinke, D.W., Franzmann, L.H., Nickle, T.C., and Yeung, E.C. (1994). Leafy cotyledon mutants of Arabidopsis. Plant Cell 6, 1049–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, W.J., Cheng, Z.J., Sang, Y.L., Zhang, M.M., Rong, X.F., Wang, Z.W., Tang, Y.Y., and Zhang, X.S. (2017). Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29, 1357–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerowitz, E.M. (1997). Genetic control of cell division patterns in developing plants. Cell 88, 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Michalczuk, L., Ribnicky, D.M., Cooke, T.J., and Cohen, J.D. (1992). Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100, 1346–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel, C., and Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62, 3713–3725.

    Article  CAS  PubMed  Google Scholar 

  • Mikuła, A., Pożoga, M., Tomiczak, K., and Rybczyński, J.J. (2015). Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34, 783–794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra, R., and Rao, G.J.N. (2016). In-vitro androgenesis in rice: advantages, constraints and future prospects. Rice Sci 23, 57–68.

    Article  Google Scholar 

  • Mishra, R., Rao, G.J.N., Rao, R.N., and Kaushal, P. (2015). Development and characterization of elite doubled haploid lines from two indica rice hybrids. Rice Sci 22, 290–299.

    Article  Google Scholar 

  • Mookkan, M., Nelson-Vasilchik, K., Hague, J., Zhang, Z.J., and Kausch, A.P. (2017). Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36, 1477–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozgova, I., Munoz-Viana, R., and Hennig, L. (2017). PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet 13, e1006562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muir, W.H., Hildebrandt, A.C., and Riker, A.J. (1954). Plant tissue cultures produced from single isolated cells. Science 119, 877–878.

    Article  Google Scholar 

  • Müller, B., and Sheen, J. (2007). Arabidopsis cytokinin signaling pathway. Sci STKE 2007, cm5.

  • Müller, B., and Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453, 1094–1097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz, A., Mangano, S., González-García, M.P., Contreras, R., Sauer, M., De Rybel, B., Weijers, D., Sánchez-Serrano, J.J., Sanmartín, M., and Rojo, E. (2017). RIMA-dependent nuclear accumulation of IYO triggers auxin-irreversible cell differentiation in Arabidopsis. Plant Cell 29, 575–588.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murvanidze, N., Nisler, J., Leroux, O., and Werbrouck, S.P.O. (2021). Cytokinin oxidase/dehydrogenase inhibitors stimulate 2iP to induce direct somatic embryogenesis in Coffea arabica. Plant Growth Regul 94, 195–200.

    Article  CAS  Google Scholar 

  • Nagata, T., and Takebe, I. (1971). Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99, 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., and Werr, W. (2012). The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. Plant Mol Biol 78, 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Neely, D. (1979). Tree wounds and wound closure. J Aboricult 5, 135–140.

    Google Scholar 

  • Negin, B., Shemer, O., Sorek, Y., and Eshed Williams, L. (2017). Shoot stem cell specification in roots by the WUSCHEL transcription factor. PLoS ONE 12, e0176093.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishihama, R., Ishizaki, K., Hosaka, M., Matsuda, Y., Kubota, A., and Kohchi, T. (2015). Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. J Plant Res 128, 407–421.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, A., Aichi, I., and Matsuoka, M. (2006). A protocol for Agrobacterium-mediated transformation in rice. Nat Protoc 1, 2796–2802.

    Article  CAS  PubMed  Google Scholar 

  • Nole-Wilson, S., Tranby, T.L., and Krizek, B.A. (2005). AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57, 613–628.

    Article  CAS  PubMed  Google Scholar 

  • Notaguchi, M., Kurotani, K., Sato, Y., Tabata, R., Kawakatsu, Y., Okayasu, K., Sawai, Y., Okada, R., Asahina, M., Ichihashi, Y., et al. (2020). Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science 369, 698–702.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, C.M., and Mathias, R.J. (1993). Regeneration of plants from protoplasts of Arabidopsis thaliana L. cv. Columbia (C24), via direct embryogenesis. J Exp Bot 44, 1579–1585.

    Article  Google Scholar 

  • Ogawa, M., Shinohara, H., Sakagami, Y., and Matsubayashi, Y. (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319, 294.

    Article  CAS  PubMed  Google Scholar 

  • Ogura, N., Sasagawa, Y., Ito, T., Tameshige, T., Kawai, S., Sano, M., Doll, Y., Iwase, A., Kawamura, A., Suzuki, T., et al. (2023). WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. Sci Adv 9, eadg6983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnoutkova, L., Vlcko, T., and Ayalew, M. (2019). Barley Anther Culture. In: Harwood, W., ed. Barley. Methods in Molecular Biology. New York: Humana Press. 37–52.

    Chapter  Google Scholar 

  • Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19, 118–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, J., Zhao, F., Zhang, G., Pan, Y., Sun, L., Bao, N., Qin, P., Chen, L., Yu, J., Zhang, Y., et al. (2019). Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants. J Genet Genomics 46, 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Yang, Z., and Xu, L. (2021). Dual roles of jasmonate in adventitious rooting. J Exp Bot 72, 6808–6810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parcy, F., Valon, C., Kohara, A., Miséra, S., and Giraudat, J. (1997). The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9, 1265–1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak, T.P., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., Van Onckelen, H.A., Dudits, D., and Fehér, A. (2002). The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129, 1807–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perianez-Rodriguez, J., Manzano, C., and Moreno-Risueno, M.A. (2014). Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin? Front Plant Sci 5.

  • Petricka, J.J., Winter, C.M., and Benfey, P.N. (2012). Control of Arabidopsis root development. Annu Rev Plant Biol 63, 563–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, G.C., and Garda, M. (2019). Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol Plant 55, 242–257.

    Article  Google Scholar 

  • Poethig, R.S. (2013). Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105, 125–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., Swarup, R., Kuempers, B., Bishopp, A., Lavenus, J., et al. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulating auxin influx carrier LAX3. Development 143, 3340–3349.

    CAS  PubMed  Google Scholar 

  • Prigge, M.J., Otsuga, D., Alonso, J.M., Ecker, J.R., Drews, G.N., and Clark, S.E. (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purwestri, Y.A., Lee, Y.S., Meehan, C., Mose, W., Susanto, F.A., Wijayanti, P., Fauzia, A.N., Nuringtyas, T.R., Hussain, N., Putra, H.L., et al. (2023). RWP-RK Domain 3 (OsRKD3) induces somatic embryogenesis in black rice. BMC Plant Biol 23, 202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, M., and Xiang, F. (2013). A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro. Plant Signal Behav 8, e23479.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu, F., Xing, S., Xue, C., Liu, J., Chen, K., Chai, T., and Gao, C. (2022). Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci China Life Sci 65, 731–738.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan, D., Shanmukhan, A.P., Kareem, A., Aiyaz, M., Varapparambathu, V., Toms, A., Kerstens, M., Valsakumar, D., Landge, A.N., Shaji, A., et al. (2020). A coherent feed-forward loop drives vascular regeneration in damaged aerial organs of plants growing in a normal developmental context. Development 147, dev185710.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, S.U., Khan, M.O., Ullah, R., Ahmad, F., and Raza, G. (2023). Agrobacterium-mediated transformation for the development of transgenic crops; present and future prospects. Mol Biotechnol doi: https://doi.org/10.1007/s12033-023-00826-8.

  • Ramirez-Parra, E., Perianez-Rodriguez, J., Navarro-Neila, S., Gude, I., Moreno-Risueno, M.A., and del Pozo, J.C. (2017). The transcription factor OBP4 controls root growth and promotes callus formation. New Phytol 213, 1787–1801.

    Article  CAS  PubMed  Google Scholar 

  • Reihman, M.A., and Rost, T.L. (1990). Regeneration responses in pea roots after tip excision at different levels. Am J Bot 77, 1159–1167.

    Article  Google Scholar 

  • Reinert, J. (1958). Morphogenese und ihre kontrolle an gewebekulturen aus carotten. Naturwissenschaften 45, 344–345.

    Article  CAS  Google Scholar 

  • Reinert, J. (1959). Über die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 53, 318–333.

    Article  Google Scholar 

  • Rensing, S.A., Goffinet, B., Meyberg, R., Wu, S.Z., and Bezanilla, M. (2020). The moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants. Plant Cell 32, 1361–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, T., Thistleton, J., Higgins, T.J., Howitt, C., and Ayliffe, M. (2014). Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tiss Organ Cult 119, 647–659.

    Article  CAS  Google Scholar 

  • Rodriguez, E., Chevalier, J., Olsen, J., Ansbøl, J., Kapousidou, V., Zuo, Z., Svenning, S., Loefke, C., Koemeda, S., Drozdowskyj, P.S., et al. (2020). Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. EMBO J 39, e103315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rost, T.L., and Jones, T.J. (1988). Pea root regeneration after tip excisions at different levels: polarity of new growth. Ann Bot 61, 513–523.

    Article  Google Scholar 

  • Rymen, B., Kawamura, A., Lambolez, A., Inagaki, S., Takebayashi, A., Iwase, A., Sakamoto, Y., Sako, K., Favero, D.S., Ikeuchi, M., et al. (2019). Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun Biol 2, 404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeedpour, A., Jahanbakhsh Godehkahriz, S., Lohrasebi, T., Esfahani, K., Hatef Salmanian, A., and Razavi, K. (2021). The effect of endogenous hormones, total antioxidant and total phenol changes on regeneration of barley cultivars. Iran J Biotechnol 19, e2838.

    PubMed  PubMed Central  Google Scholar 

  • Sakakibara, K., Reisewitz, P., Aoyama, T., Friedrich, T., Ando, S., Sato, Y., Tamada, Y., Nishiyama, T., Hiwatashi, Y., Kurata, T., et al. (2014). WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development 141, 1660–1670.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, Y., Kawamura, A., Suzuki, T., Segami, S., Maeshima, M., Polyn, S., De Veylder, L., and Sugimoto, K. (2022). Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. Plant Cell 34, 4348–4365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sang, Y.L., Cheng, Z.J., and Zhang, X.S. (2018). iPSCs: a comparison between animals and plants. Trends Plant Sci 23, 660–666.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T. (2007). Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Sugimoto, N., Hirai, T., Imai, A., Kubo, M., Hiwatashi, Y., Nishiyama, T., and Hasebe, M. (2017). Cells reprogramming to stem cells inhibit the reprogramming of adjacent cells in the moss Physcomitrella patens. Sci Rep 7, 1909.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauret-Güeto, S., Frangedakis, E., Silvestri, L., Rebmann, M., Tomaselli, M., Markel, K., Delmans, M., West, A., Patron, N.J., and Haseloff, J. (2020). Systematic tools for reprogramming plant gene expression in a simple model, Marchantia polymorpha. ACS Synth Biol 9, 864–882.

    Article  PubMed  Google Scholar 

  • Scheres, B., Benfey, P., and Dolan, L. (2002). Root development. Arabidopsis Book 1, e0101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Schween, G., Hohe, A., Koprivova, A., and Reski, R. (2003). Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol 160, 209–212.

    Article  CAS  PubMed  Google Scholar 

  • Sena, G., Wang, X., Liu, H.Y., Hofhuis, H., and Birnbaum, K.D. (2009). Organ regeneration does not require a functional stem cell niche in plants. Nature 457, 1150–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, B., Xu, C., Zhang, X., Cao, H., Xin, W., and Hu, Y. (2016). Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci USA 113, 5101–5106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmukhan, A.P., Mathew, M.M., Aiyaz, M., Varaparambathu, V., Kareem, A., Radhakrishnan, D., and Prasad, K. (2021). Regulation of touch-stimulated de novo root regeneration from Arabidopsis leaves. Plant Physiol 187, 52–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, A.J., Szövényi, P., and Shaw, B. (2011). Bryophyte diversity and evolution: windows into the early evolution of land plants. Am J Bot 98, 352–369.

    Article  PubMed  Google Scholar 

  • Shemer, O., Landau, U., Candela, H., Zemach, A., and Eshed Williams, L. (2015). Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci 238, 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, L., Hu, X., Du, Y., Zhang, G., Huang, H., Scheres, B., and Xu, L. (2017). Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 144, 3126–3133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibaya, T., and Sugawara, Y. (2009). Induction of multinucleation by β-glucosyl Yariv reagent in regenerated cells from Marchantia polymorpha protoplasts and involvement of arabinogalactan proteins in cell plate formation. Planta 230, 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura, M. (2016). Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol 57, 230–256.

    Article  CAS  PubMed  Google Scholar 

  • Shrawat, A.K., Becker, D., and Lörz, H. (2007). Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172, 281–290.

    Article  CAS  Google Scholar 

  • Shu, J., Chen, C., Li, C., and Cui, Y. (2020). The complexity of PRC2 catalysts CLF and SWN in plants. Biochem Soc Trans 48, 2779–2789.

    Article  CAS  PubMed  Google Scholar 

  • Šimášková, M., O’Brien, J.A., Khan, M., Van Noorden, G., Ötvös, K., Vieten, A., De Clercq, I., Van Haperen, J.M.A., Cuesta, C., Hoyerová, K., et al. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat Commun 6, 8717.

    Article  PubMed  Google Scholar 

  • Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11, 118–130.

    CAS  PubMed  Google Scholar 

  • Smith, Z.R., and Long, J.A. (2010). Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature 464, 423–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl, Y., Grabowski, S., Bleckmann, A., Kühnemuth, R., Weidtkamp-Peters, S., Pinto, K.G., Kirschner, G.K., Schmid, J.B., Wink, R.H., Hülsewede, A., et al. (2013). Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol 23, 362–371.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, Y., Wink, R.H., Ingram, G.C., and Simon, R. (2009). A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19, 909–914.

    Article  CAS  PubMed  Google Scholar 

  • Steward, F.C., Mapes, M.O., and Mears, K. (1958). GROWTH AND ORGANIZED DEVELOPMENT OF CULTURED CELLS. II. Organization in cultures grown from freely suspended cell. Am J Bot 45, 705–708.

    Article  Google Scholar 

  • Stobbe, H., Schmitt, U., Eckstein, D., and Dujesiefken, D. (2002). Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann Bot 89, 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (2001). LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98, 11806–11811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y.H., Liu, Y.B., and Zhang, X.S. (2011). Auxin-cytokinin interaction regulates meristem development. Mol Plant 4, 616–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y.H., Tang, L.P., Zhao, X.Y., and Zhang, X.S. (2021). Plant cell totipotency: insights into cellular reprogramming. J Integr Plant Biol 63, 228–243.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y.H., and Zhang, X.S. (2009). Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 4, 574–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, K., Gordon, S.P., and Meyerowitz, E.M. (2011). Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21, 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, K., Jiao, Y., and Meyerowitz, E.M. (2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18, 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B., Looi, L.S., Guo, S., He, Z., Gan, E.S., Huang, J., Xu, Y., Wee, W.Y., and Ito, T. (2014). Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343, 1248559.

    Article  PubMed  Google Scholar 

  • Sussex, I.M. (2008). The scientific roots of modern plant biotechnology. Plant Cell 20, 1189–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takebe, I., Labib, G., and Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58, 318–320.

    Article  Google Scholar 

  • Takenaka, M., Yamaoka, S., Hanajiri, T., Shimizu-Ueda, Y., Yamato, K.T., Fukuzawa, H., and Ohyama, K. (2000). Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Res 9, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, H., Hashimoto, N., Kawai, S., Yumoto, E., Shibata, K., Tameshige, T., Yamamoto, Y., Sugimoto, K., Asahina, M., and Ikeuchi, M. (2023). Auxin-induced WUSCHEL-RELATED HOMEOBOX13 mediates asymmetric activity of callus formation upon cutting. Plant Cell Physiol 64, 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Tessadori, F., Chupeau, M.C., Chupeau, Y., Knip, M., Germann, S., van Driel, R., Fransz, P., and Gaudin, V. (2007). Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120, 1200–1208.

    Article  CAS  PubMed  Google Scholar 

  • Thakare, D., Tang, W., Hill, K., and Perry, S.E. (2008). The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146, 1663–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To, A., Valon, C., Savino, G., Guilleminot, J., Devic, M., Giraudat, J., and Parcy, F. (2006). A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18, 1642–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To, J.P.C., and Kieber, J.J. (2008). Cytokinin signaling: two-components and more. Trends Plant Sci 13, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Tran, S., Ison, M., Ferreira Dias, N.C., Ortega, M.A., Chen, Y.S., Peper, A., Hu, L., Xu, D., Mozaffari, K., Severns, P.M., et al. (2023a). Endogenous salicylic acid suppresses de novo root regeneration from leaf explants. PLoS Genet 19, e1010636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, S., Stephanie Chen, Y.F., Xu, D., Ison, M., and Yang, L. (2023b). Microbial pattern recognition suppresses de novo organogenesis. Development 150, dev201485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuwamoto, R., Yokoi, S., and Takahata, Y. (2010). Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol 73, 481–492.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P., and Scheres, B. (1995). Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P., and Scheres, B. (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287–289.

    Article  CAS  PubMed  Google Scholar 

  • van der Graaff, E., Laux, T., and Rensing, S.A. (2009). The WUS homeobox-containing (WOX) protein family. Genome Biol 10, 248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Eck, J., Keen, P., and Tjahjadi, M. (2019). Agrobacterium tumefaciens-mediated transformation of tomato. In: Kumar, S., Barone, P., and Smith, M., eds. Transgenic Plants. Methods in Molecular Biology. New York: Humana Press. 225–234.

    Chapter  Google Scholar 

  • Varapparambath, V., Mathew, M.M., Shanmukhan, A.P., Radhakrishnan, D., Kareem, A., Verma, S., Ramalho, J.J., Manoj, B., Vellandath, A.R., Aiyaz, M., et al. (2022). Mechanical conflict caused by a cell-wall-loosening enzyme activates de novo shoot regeneration. Dev Cell 57, 2063–2080.e10.

    Article  CAS  PubMed  Google Scholar 

  • Vasil, V., and Hildebrandt, A.C. (1965). Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150, 889–892.

    Article  CAS  PubMed  Google Scholar 

  • Verdeil, J., Alemanno, L., Niemenak, N., and Tranbarger, T. (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Waki, T., Hiki, T., Watanabe, R., Hashimoto, T., and Nakajima, K. (2011). The Arabidopsis RWP-RK PROTEin RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr Biol 21, 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  • Wan, Q., Zhai, N., Xie, D., Liu, W., and Xu, L. (2023). WOX11: the founder of plant organ regeneration. Cell Regen 12, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Zhu, L., Zhao, B., Zhao, Y., Xie, Y., Zheng, Z., Li, Y., Sun, J., and Wang, H. (2019). Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12, 597–602.

    Article  PubMed  Google Scholar 

  • Wang, F.X., Shang, G.D., and Wang, J.W. (2022a). Towards a hierarchical gene regulatory network underlying somatic embryogenesis. Trends Plant Sci 27, 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F.X., Shang, G.D., Wu, L.Y., Xu, Z.G., Zhao, X.Y., and Wang, J.W. (2020a). Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev Cell 54, 742–757.e8.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Tian, C., Zhang, C., Shi, B., Cao, X., Zhang, T.Q., Zhao, Z., Wang, J.W., and Jiao, Y. (2017a). Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29, 1373–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Liu, H., Du, L., and Ye, X. (2017b). Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J 15, 614–623.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Shi, L., Liang, X., Zhao, P., Wang, W., Liu, J., Chang, Y., Hiei, Y., Yanagihara, C., Du, L., et al. (2022b). The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 8, 717–720.

    Article  PubMed  Google Scholar 

  • Wang, L.Q., Li, Z., Wen, S.S., Wang, J.N., Zhao, S.T., and Lu, M.Z. (2020b). WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. J Exp Bot 71, 1503–1513.

    CAS  PubMed  Google Scholar 

  • Wang, N., Ryan, L., Sardesai, N., Wu, E., Lenderts, B., Lowe, K., Che, P., Anand, A., Worden, A., van Dyk, D., et al. (2023). Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat Plants 9, 255–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Guan, Y., Wang, Q., Zhao, J., Sun, G., Hu, X., Running, M.P., Sun, H., and Huang, J. (2020c). A mycorrhizae-like gene regulates stem cell and gametophore development in mosses. Nat Commun 11, 2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., and Jiao, Y. (2018). Axillary meristem initiation—a way to branch out. Curr Opin Plant Biol 41, 61–66.

    Article  PubMed  Google Scholar 

  • Wang, Y., and Li, J. (2008). Molecular basis of plant architecture. Annu Rev Plant Biol 59, 253–279.

    Article  CAS  PubMed  Google Scholar 

  • Wasternack, C. (2019). New light on local and systemic wound signaling. Trends Plant Sci 24, 102–105.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Z., and Xu, Z. (1988). Plant regeneration from protoplasts of soybean (Glycine max L.). Plant Cell Rep 7, 348–351.

    Article  CAS  PubMed  Google Scholar 

  • West, M.A.L., Yee, K.M., Danao, J., Zimmerman, J.L., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (1994). LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6, 1731–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, E.G., and Maheswaran, G. (1986). Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57, 443–462.

    Article  Google Scholar 

  • Williams, L., Zhao, J., Morozova, N., Li, Y., Avivi, Y., and Grafi, G. (2003). Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 228, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Wilmar, C., and Hellendoorn, M. (1968). Growth and morphogenesis of asparagus cells cultured in vitro. Nature 217, 369–370.

    Article  Google Scholar 

  • Wójcikowska, B., Botor, M., Morończyk, J., Wójcik, A.M., Nodzyński, T., Karcz, J., and Gaj, M.D. (2018). Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci 9, 1353.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wójcikowska, B., and Gaj, M.D. (2017). Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep 36, 843–858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wójcikowska, B., Jaskóła, K., Gąsiorek, P., Meus, M., Nowak, K., and Gaj, M.D. (2013). LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238, 425–440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162–1164.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L.Y., Shang, G.D., Wang, F.X., Gao, J., Wan, M.C., Xu, Z.G., and Wang, J.W. (2022). Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev Cell 57, 526–542.e7.

    Article  CAS  PubMed  Google Scholar 

  • Xie, M., Chen, H., Huang, L., O’Neil, R.C., Shokhirev, M.N., and Ecker, J.R. (2018). A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat Commun 9, 1604.

    Article  PubMed  PubMed Central  Go