Skip to main content
Log in

GCGR: novel potential therapeutic target for chronic kidney disease

  • Research Highlight
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arvaniti, E., Moulos, P., Vakrakou, A., Chatziantoniou, C., Chadjichristos, C., Kavvadas, P., Charonis, A., and Politis, P.K. (2016). Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci Rep 6, 26235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland, M.L., Laker, R.C., Mather, K., Nawrocki, A., Oldham, S., Boland, B.B., Lewis, H., Conway, J., Naylor, J., Guionaud, S., et al. (2020). Resolution of NASH and hepatic fibrosis by the GLP-1R and GCGR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis. Nat Metab 2, 413–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomholt, A.B., Johansen, C.D., Christensen, J.B., Kjeldsen, S.A.S., Galsgaard, K.D., Winther-Sørensen, M., Serizawa, R., Hornum, M., Porrini, E., Pedersen, J., et al. (2022). Evaluation of commercially available glucagon receptor antibodies and glucagon receptor expression. Commun Biol 5, 1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, X., Kim, S.Y., Okamoto, H., Xin, Y., Yancopoulos, G.D., Murphy, A.J., and Gromada, J. (2018). Glucagon contributes to liver zonation. Proc Natl Acad Sci USA 115, E4111–E4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Yi, Z., D’Agati, V.D., Sun, Z., Zhong, F., Zhang, W., Wen, J., Zhou, T., Li, Z., He, L., et al. (2019). Comparison of kidney transcriptomic profiles of early and advanced diabetic nephropathy reveals potential new mechanisms for disease progression. Diabetes 68, 2301–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson, P.C., Eddy, S., Taroni, J.N., Lightfoot, Y.L., Mariani, L., Parikh, H., Lindenmeyer, M.T., Ju, W., Greene, C.S., Godfrey, B., et al. (2018). Metabolic pathways and immunometabolism in rare kidney diseases. Ann Rheum Dis 77, 1226–1233.

    PubMed  Google Scholar 

  • Li, Y., Gu, W., Hepokoski, M., Pham, H., Tham, R., Kim, Y.C., Simonson, T.S., and Singh, P. (2023). Energy metabolism dysregulation in chronic kidney disease. Kidney360 4, 1080–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malas, T.B., Formica, C., Leonhard, W.N., Rao, P., Granchi, Z., Roos, M., Peters, D.J.M., and ’t Hoen, P. A.C. (2017). Meta-analysis of polycystic kidney disease expression profiles defines strong involvement of injury repair processes. Am J Physiol Renal Physiol 312, F806–F817.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R.A., and Birnbaum, M.J. (2016). Glucagon: acute actions on hepatic metabolism. Diabetologia 59, 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  • Sekar, R., Motzler, K., Kwon, Y., Novikoff, A., Jülg, J., Najafi, B., Wang, S., Warnke, A.L., Seitz, S., Hass, D., et al. (2022). Vps37a regulates hepatic glucose production by controlling glucagon receptor localization to endosomes. Cell Metab 34, 1824–1842.e9.

    Article  CAS  PubMed  Google Scholar 

  • Sun, E.W., Martin, A.M., de Fontgalland, D., Sposato, L., Rabbitt, P., Hollington, P., Wattchow, D.A., Colella, A.D., Chataway, T., Wewer Albrechtsen, N. J., et al. (2021). Evidence for glucagon secretion and function within the human gut. Endocrinology 162, bqab022.

    Article  PubMed  Google Scholar 

  • Vella, A., Liu, Z., Kim, W., Chen, Z., Shin, Y.K., Carlson, O.D., Fiori, J.L., Xin, L., Napora, J.K., Short, R., et al. (2011). Insulin and glucagon regulate pancreatic α-cell proliferation. PLoS ONE 6, e16096.

    Article  Google Scholar 

  • Wang, M.Y., Zhang, Z., Zhao, S., Onodera, T., Sun, X. N., Zhu, Q., Li, C., Li, N., Chen, S., Paredes, M., et al. (2024). Downregulation of the kidney glucagon receptor, essential for renal function and systemic homeostasis, contributes to chronic kidney disease. Cell Metab 36, 575–597.e7.

    Article  CAS  PubMed  Google Scholar 

  • Webster, A.C., Nagler, E.V., Morton, R.L., and Masson, P. (2017). Chronic kidney disease. Lancet 389, 1238–1252.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (82003102, 82300787, 82170598), Hunan Provincial Key Field R&D Plan Project (2022SK2034), Natural Science Foundation of Hunan Province (2022JJ30058, 2021JJ40992), and the Youth Science Foundation of Xiangya Hospital (2021Q11). We thank Xiaoqiang Tang for his review of, and critical comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Huang or Rong Xiang.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Huang, H. & Xiang, R. GCGR: novel potential therapeutic target for chronic kidney disease. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-024-2576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-024-2576-x

Navigation