Skip to main content
Log in

TIP60 acetylation of Bub1 regulates centromeric H2AT120 phosphorylation for faithful chromosome segregation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis. Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability. Bub1 is essential for the mitotic centromere dynamics, yet the underlying molecular mechanisms remain largely unclear. Here, we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis. This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120 (H2ApT120), which recruits Aurora B and Shugoshin 1 (Sgo1) to regulate centromere integrity, protect centromeric cohesion, and ensure the subsequent faithful chromosome segregation. Expression of the non-acetylated Bub1 mutant reduces its kinase activity, decreases the level of H2ApT120, and disrupts the recruitment of centromere proteins and chromosome congression, leading to genomic instability of daughter cells. When cells exit mitosis, HDAC1-regulated deacetylation of Bub1 decreases H2ApT120 levels and thereby promotes the departure of centromeric CPC and Sgo1, ensuring timely centromeres disassembly. Collectively, our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres, ensuring faithful chromosome segregation during mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbar, H., Cao, J., Wang, D.M., Yuan, X., Zhang, M.J., Muthusamy, S., Song, X.Y., Liu, X., Aikhionbare, F., Yao, X.B., et al. (2022). Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 14, mjac056.

    Article  Google Scholar 

  • Bao, X.L., Liu, H., Liu, X., Ruan, K., Zhang, Y.H., Zhang, Z.Y., Hu, Q., Liu, Y., Akram, S., Zhang, J.H., et al. (2018). Mitosis-specific acetylation tunes Ran effector binding for chromosome segregation. J Mol Cell Biol 10, 18–32.

    Article  CAS  PubMed  Google Scholar 

  • Bloom, C.R., and North, B.J. (2021). Physiological relevance of post-translational regulation of the spindle assembly checkpoint protein BubR1. Cell Biosci 11, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyarchuk, Y., Salic, A., Dasso, M., and Arnaoutov, A. (2007). Bub1 is essential for assembly of the functional inner centromere. J Cell Biol 176, 919–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breit, C., Bange, T., Petrovic, A., Weir, J.R., Müller, F., Vogt, D., and Musacchio, A. (2015). Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1. PLoS One 10, e0144673.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmena, M., Wheelock, M., Funabiki, H., and Earnshaw, W.C. (2012). The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13, 789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll, C.W., Silva, M.C.C., Godek, K.M., Jansen, L.E.T., and Straight, A.F. (2009). Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11, 896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll, C.W., and Straight, A.F. (2006). Centromere formation: from epigenetics to self-assembly. Trends Cell Biol 16, 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Choi, E., Choe, H., Min, J., Choi, J.Y., Kim, J., and Lee, H. (2009). BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J 28, 2077–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, E., and Chen, R.H. (2003). Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol 5, 748–753.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, D.W., Mao, Y., and Sullivan, K.F. (2003). Centromeres and kinetochores. Cell 112, 407–421.

    Article  CAS  PubMed  Google Scholar 

  • Coffey, K., Blackburn, T.J., Cook, S., Golding, B.T., Griffin, R.J., Hardcastle, I.R., Hewitt, L., Huberman, K., McNeill, H.V., Newell, D.R., et al. (2012). Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS ONE 7, e45539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, J., Sullivan, B.A., and Higgins, J.M.G. (2006). Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11, 741–750.

    Article  CAS  PubMed  Google Scholar 

  • Dai, J., Sultan, S., Taylor, S.S., and Higgins, J.M.G. (2005). The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19, 472–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbsky, G.J. (2001). The mitotic spindle checkpoint. Curr Biol 11, R1001–R1004.

    Article  CAS  PubMed  Google Scholar 

  • Hadders, M.A., Hindriksen, S., Truong, M.A., Mhaskar, A.N., Wopken, J.P., Vromans, M.J.M., and Lens, S.M.A. (2020). Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J Cell Biol 219, e201907087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Hu, W., Guo, A.D., Zhai, L., Ma, S., Nie, H.J., Zhou, B.S., Liu, T., Jia, X., Liu, X., et al. (2024). Spatiotemporal and direct capturing global substrates of lysine-modifying enzymes in living cells. Nat Commun 15, 1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Feng, J., Famulski, J., Rattner, J.B., Liu, S.T., Kao, G.D., Muschel, R., Chan, G.K.T., and Yen, T.J. (2007). Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177, 413–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, L., Li, B., and Yu, H. (2016). The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun 7, 10818. Jia, M., Yue, X., Sun, W., Zhou, Q., Chang, C., Gong, W., Feng, J., Li, X., Zhan, R., Mo, K., et al. (2023). ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv 9, eadg4993.

    Article  Google Scholar 

  • Johnson, V.L., Scott, M.I.F., Holt, S.V., Hussein, D., and Taylor, S.S. (2004). Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117, 1577–1589.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J., Yang, M., Li, B., Qi, W., Zhang, C., Shokat, K.M., Tomchick, D.R., Machius, M., and Yu, H. (2008). Structure and substrate recruitment of the human spindle checkpoint kinase Bub1. Mol Cell 32, 394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapanidou, M., Lee, S., and Bolanos-Garcia, V.M. (2015). BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol Med 21, 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Kawashima, S.A., Yamagishi, Y., Honda, T., Ishiguro, K., and Watanabe, Y. (2010). Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing Shugoshin. Science 327, 172–177.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, A.E., Ghenoiu, C., Xue, J.Z., Zierhut, C., Kimura, H., and Funabiki, H. (2010). Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T., and Gartner, A. (2021). Bub1 kinase in the regulation of mitosis. anim Cells Syst 25, 1–10.

    Article  Google Scholar 

  • Kitajima, T.S., Hauf, S., Ohsugi, M., Yamamoto, T., and Watanabe, Y. (2005). Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol 15, 353–359.

    Article  CAS  PubMed  Google Scholar 

  • Klebig, C., Korinth, D., and Meraldi, P. (2009). Bub1 regulates chromosome segregation in a kinetochore-independent manner. J Cell Biol 185, 841–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Kim, H., Ji, Z., Zhang, T., Chen, B., Ge, Y., Hu, Y., Feng, X., Han, X., Xu, H., et al. (2018). The BUB3-BUB1 complex promotes telomere DNA replication. Mol Cell 70, 395–407.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, C., Zhang, Z., Chen, Q., Yan, H., Zhang, M., Zhou, L., Xu, J., Lu, W., and Wang, F. (2020). Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation. J Cell Biol 219, e201907092.

    Article  PubMed  Google Scholar 

  • Lin, Z., Jia, L., Tomchick, D.R., Luo, X., and Yu, H. (2014). Substrate-specific activation of the mitotic kinase Bub1 through intramolecular autophosphorylation and kinetochore targeting. Structure 22, 1616–1627.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Jia, L., and Yu, H. (2013). Phospho-H2A and cohesin specify distinct tension-regulated Sgo1 pools at kinetochores and inner centromeres. Curr Biol 23, 1927–1933.

    Article  CAS  PubMed  Google Scholar 

  • McGuinness, B.E., Hirota, T., Kudo, N.R., Peters, J.M., and Nasmyth, K. (2005). Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3, 433–449.

    Article  CAS  Google Scholar 

  • Mo, F., Zhuang, X., Liu, X., Yao, P.Y., Qin, B., Su, Z., Zang, J., Wang, Z., Zhang, J., Dou, Z., et al. (2016). Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol 12, 226–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, C.F., Huttner, D., Bizard, A.H., Hirano, S., Li, T.N., Palmai-Pallag, T., Bjerregaard, V.A., Liu, Y., Nigg, E.A., Wang, L.H.C., et al. (2015). PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis. Nat Commun 6, 8962.

    Article  CAS  PubMed  Google Scholar 

  • Park, I., Lee, H., Choi, E., Lee, Y.K., Kwon, M.S., Min, J., Park, P.G., Lee, S., Kong, Y.Y., Gong, G., et al. (2013). Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202, 295–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primorac, I., Weir, J.R., Chiroli, E., Gross, F., Hoffmann, I., van Gerwen, S., Ciliberto, A., and Musacchio, A. (2013). Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. eLife 2, e01030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi, W., and Yu, H. (2007). KEN-Box-dependent degradation of the Bub1 spindle checkpoint kinase by the anaphase-promoting complex/cyclosome. J Biol Chem 282, 3672–3679.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, B.T., Farr, K.A., and Hoyt, M.A. (1994). The Saccharomyces cerevisiae checkpoint gene Bub1 encodes a novel protein-kinase. Molecular and Cellular Biology 14, 8282–8291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salic, A., Waters, J.C., and Mitchison, T.J. (2004). Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578.

    Article  CAS  PubMed  Google Scholar 

  • Sharp-Baker, H., and Chen, R.H. (2001). Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and Cenp-E, independently of its kinase activity. J Cell Biol 153, 1239–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, X., Yang, F., Liu, X., Xia, P., Yin, W., Wang, Z., Wang, Y., Yuan, X., Dou, Z., Jiang, K., et al. (2021). Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nat Chem Biol 17, 1314–1323.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Z., Shu, H., Oncel, D., Chen, S., and Yu, H. (2004a). Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C Inhibition by the spindle checkpoint. Mol Cell 16, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Z., Sun, Y., Harley, S.E., Zou, H., and Yu, H. (2004b). Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc Natl Acad Sci USA 101, 18012–18017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, S.S., and McKeon, F. (1997). Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, S.L., Bakhoum, S.F., and Compton, D.A. (2010). Mechanisms of chromosomal instability. Curr Biol 20, R285–R295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Dai, J., Daum, J.R., Niedzialkowska, E., Banerjee, B., Stukenberg, P.T., Gorbsky, G.J., and Higgins, J.M.G. (2010). Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330, 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, N., Jiang, Y., Peng, P., Liu, G.B., Qi, S.K., Liu, K., Mei, Q., and Li, J. (2022). Quantitative proteomics reveals the role of lysine 2-hydroxyisobutyrylation pathway mediated by Tip60. Oxid Med Cell Longev 8, 2022:4571319.

    Google Scholar 

  • Xia, P., Wang, Z., Liu, X., Wu, B., Wang, J., Ward, T., Zhang, L., Ding, X., Gibbons, G., Shi, Y., et al. (2012). EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis. Proc Natl Acad Sci USA 109, 16564–16569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi, Y., Honda, T., Tanno, Y., and Watanabe, Y. (2010). Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330, 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Liang, C., Chen, Q., Yan, H., Xu, J., Zhao, H., Yuan, X., Liu, J., Lin, S., Lu, W., et al. (2020). Histone H2A phosphorylation recruits topoisomeraseΠ α to centromeres to safeguard genomic stability. EMBO J 39, e101863.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, G., Cheng, Y., Gui, P., Cui, M., Liu, W., Wang, W., Wang, X., Ali, M., Dou, Z., Niu, L., et al. (2019). Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment. J Biol Chem 294, 576–592.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Drs. Xuebiao Yao and Xing Liu (University of Science and Technology of China) for providing the HDAC2, SIRT1, SIRT2 and SIRT3 genes. We thank the Flow Cytometry Core at National Center for Protein Sciences at Peking University, particularly Drs. Hongxia Lv, Liying Du and Jia Luo, for technical help with cell sorting. We thank Dr. Dong Liu, for technical help with mass spectrometry, and Dr Siying Qin, for technical help with confocal microscopy, both at National Center for Protein Sciences at Peking University. We also thank all the other members of our laboratories at Kunming University of Science and Technology and Peking University for their constructive suggestions. This work was supported by grants from the National Natural Science Foundation of China (32130026, 92254305 and 32070714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmao Zhang.

Ethics declarations

The authors declare that they have no conflict of Interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Yang, B., Xin, G. et al. TIP60 acetylation of Bub1 regulates centromeric H2AT120 phosphorylation for faithful chromosome segregation. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2604-8

Navigation