Skip to main content
Log in

Engineering biomimetic nanosystem targeting multiple tumor radioresistance hallmarks for enhanced radiotherapy

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Tumor cells establish a robust self-defense system characterized by hypoxia, antioxidant overexpression, DNA damage repair, and so forth to resist radiotherapy. Targeting one of these features is insufficient to overcome radioresistance due to the feedback mechanisms initiated by tumor cells under radiotherapy. Therefore, we herein developed an engineering biomimetic nanosystem (M@HHPt) masked with tumor cell membranes and loaded with a hybridized protein-based nanoparticle carrying oxygens (O2) and cisplatin prodrugs (Pt(IV)) to target multiple tumor radioresistance hallmarks for enhanced radiotherapy. After administration, M@HHPt actively targeted and smoothly accumulated in tumor cells by virtue of its innate homing abilities to realize efficient co-delivery of O2 and Pt(IV). O2 introduction induced hypoxia alleviation cooperated with Pt(IV) reduction caused glutathione consumption greatly amplified radiotherapy-ignited cellular oxidative stress. Moreover, the released cisplatin effectively hindered DNA damage repair by crosslinking with radiotherapy-produced DNA fragments. Consequently, M@HHPt-sensitized radiotherapy significantly suppressed the proliferation of lung cancer H1975 cells with an extremely high sensitizer enhancement ratio of 1.91 and the progression of H1975 tumor models with an excellent tumor inhibition rate of 94.7%. Overall, this work provided a feasible strategy for tumor radiosensitization by overcoming multiple radioresistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awuah, S.G., Riddell, I.A., and Lippard, S.J. (2017). Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci USA 114, 950–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly, A.L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A.V., Braguer, D., and Esteve, M.A. (2019). In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 9, 12890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker, H.E., Paget, J.T.E., Khan, A.A., and Harrington, K.J. (2015). The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15, 409–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ J 5, 9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brabec, V., Hrabina, O., and Kasparkova, J. (2017). Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 351, 2–31.

    Article  CAS  Google Scholar 

  • Buckley, A.M., Lynam-Lennon, N., O’Neill, H., and O’Sullivan, J. (2020). Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol 17, 298–313.

    Article  CAS  PubMed  Google Scholar 

  • Cai, J., Xu, X., and Saw, P.E. (2024). Nanomedicine targeting ferroptosis to overcome anticancer therapeutic resistance. Sci China Life Sci 67, 19–40.

    Article  CAS  PubMed  Google Scholar 

  • Cao, H., Gao, Y., Jia, H., Zhang, L., Liu, J., Mu, G., Gui, H., Wang, Y., Yang, C., and Liu, J. (2022). Macrophage-membrane-camouflaged nonviral gene vectors for the treatment of multidrug-resistant bacterial sepsis. Nano Lett 22, 7882–7891.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., Chen, J., Yang, Z., Xu, J., Xu, L., Liang, C., Han, X., and Liu, Z. (2019). Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv Mater 31, 1802228.

    Article  Google Scholar 

  • Chen, Y., Li, Y., Huang, L., Du, Y., Gan, F., Li, Y., and Yao, Y. (2021). Antioxidative stress: inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance. Oxid Med Cell Longev 2021, 6620306.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Liu, L., Liang, R., Luo, Z., He, H., Wu, Z., Tian, H., Zheng, M., Ma, Y., and Cai, L. (2018). Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 12, 8633–8645.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, D., Keogh, M.C., Ishii, H., Peterson, C.L., Buratowski, S., and Lieberman, J. (2005). γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20, 801–809.

    Article  CAS  PubMed  Google Scholar 

  • de Vries, G., Rosas-Plaza, X., van Vugt, M.A.T.M., Gietema, J.A., and de Jong, S. (2020). Testicular cancer: determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat Rev 88, 102054.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Z., Feng, L., Chao, Y., Hao, Y., Chen, M., Gong, F., Han, X., Zhang, R., Cheng, L., and Liu, Z. (2019). Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett 19, 805–815.

    Article  CAS  PubMed  Google Scholar 

  • Duan, Y., Dhar, A., Patel, C., Khimani, M., Neogi, S., Sharma, P., Siva Kumar, N., and Vekariya, R.L. (2020). A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 10, 26777–26791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Zhou, T., Cui, P., He, Y., Chang, X., Xing, L., and Jiang, H. (2019). Modulation of intracellular oxygen pressure by dual-drug nanoparticles to enhance photodynamic therapy. Adv Funct Mater 29, 1806708.

    Article  Google Scholar 

  • Fang, R.H., Gao, W., and Zhang, L. (2023). Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 20, 33–48.

    Article  PubMed  Google Scholar 

  • Fu, S., Li, Z., Xiao, L., Hu, W., Zhang, L., Xie, B., Zhou, Q., He, J., Qiu, Y., Wen, M., et al. (2019). Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair. Cell Rep 28, 1136–1143.e4.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Wang, K., Zhang, J., Duan, X., Sun, Q., and Men, K. (2023). Multifunctional nanoparticle for cancer therapy. MedComm 4, e187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil del Alcazar, C.R., Todorova, P.K., Habib, A.A., Mukherjee, B., and Burma, S. (2016). Augmented HR repair mediates acquired temozolomide resistance in glioblastoma. Mol Cancer Res 14, 928–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, X., Cui, B., Li, P., Gao, J., Gao, Y., Cai, X., Wang, H., Zhang, W., and Yang, C. (2023). An in situ self-assembled peptide derivative for inhibition of glutathione synthesis and selective enhancement of tumor radiotherapy. iRADIOLOGY 1, 199–208.

    Article  Google Scholar 

  • Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C., and Lander, E.S. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644.

    Article  CAS  PubMed  Google Scholar 

  • Holohan, C., Van Schaeybroeck, S., Longley, D.B., and Johnston, P.G. (2013). Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13, 714–726.

    Article  CAS  PubMed  Google Scholar 

  • Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B., and Simon, M.C. (2003). Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol 23, 9361–9374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q., Sun, W., Wang, C., and Gu, Z. (2016). Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev 98, 19–34.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C., Wang, F., Liu, L., Jiang, W., Liu, W., Ma, W., and Zhao, H. (2021). Hypoxic tumor radiosensitization using engineered probiotics. Adv Healthc Mater 10, 2002207.

    Article  CAS  Google Scholar 

  • Jamkhande, P.G., Ghule, N.W., Bamer, A.H., and Kalaskar, M.G. (2019). Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Tech 53, 101174.

    Article  CAS  Google Scholar 

  • Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., and Shu, Y. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp, J.A., Shim, M.S., Heo, C.Y., and Kwon, Y.J. (2016). “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 98, 3–18.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W., Lee, S., Seo, D., Kim, D., Kim, K., Kim, E., Kang, J., Seong, K.M., Youn, H., and Youn, B. (2019). Cellular stress responses in radiotherapy. Cells 8, 1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Song, Z., Ru, Y., Zhang, J., Luo, L., Yang, W., Wu, H., Jin, H., Bao, X., Wei, D., et al. (2023). Inside Back Cover: small-molecule nanoprodrug with high drug loading and EGFR, PI3K/AKT dual-inhibiting properties for bladder cancer treatment (EXP2 5/2023). Exploration 3, 20230503.

    Article  Google Scholar 

  • Li, P., Zhang, D., Shen, L., Dong, K., Wu, M., Ou, Z., and Shi, D. (2016). Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells. Sci Rep 6, 22831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Shan, X., Chen, Z., Gao, N., Zeng, W., Zeng, X., and Mei, L. (2021). Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv Sci 8, 2002589.

    Article  CAS  Google Scholar 

  • Liu, R., Bian, Y., Liu, L., Liu, L., Liu, X., and Ma, S. (2022). Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (review). Int J Mol Med 49, 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobachevsky, P., Leong, T., Daly, P., Smith, J., Best, N., Tomaszewski, J., Thompson, E. R., Li, N., Campbell, I.G., Martin, R.F., et al. (2016). Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett 383, 212–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu, M., Zhu, D., Kong, X., Yang, Y., Ding, S., Zhou, Y., Quan, H., Duo, Y., and Bao, Z. (2020). Glutathione-depleting nanoenzyme and glucose oxidase combination for hypoxia modulation and radiotherapy Enhancement. Adv Healthc Mater 9, 1901819.

    Article  Google Scholar 

  • Ou, C., Na, W., Ge, W., Huang, H., Gao, F., Zhong, L., Zhao, Y., and Dong, X. (2021). Biodegradable charge-transfer complexes for glutathione depletion induced ferroptosis and NIR-II photoacoustic imaging guided cancer photothermal therapy. Angew Chem Int Ed 60, 8157–8163.

    Article  CAS  Google Scholar 

  • Porsgaard, S., Merte, L.R., Ono, L.K., Behafarid, F., Matos, J., Helveg, S., Salmeron, M., Roldan Cuenya, B., and Besenbacher, F. (2012). Stability of platinum nanoparticles supported on SiO2/Si(111): a high-pressure X-ray photoelectron spectroscopy study. ACS Nano 6, 10743–10749.

    Article  CAS  PubMed  Google Scholar 

  • Rademakers, S.E., Lok, J., van der Kogel, A.J., Bussink, J., and Kaanders, J.H. (2011). Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11, 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao, L., Bu, L.L., Cai, B., Xu, J.H., Li, A., Zhang, W.F., Sun, Z.J., Guo, S.S., Liu, W., Wang, T.H., et al. (2016). Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 28, 3460–3466.

    Article  CAS  PubMed  Google Scholar 

  • Riener, C.K., Kada, G., and Gruber, H.J. (2002). Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem 373, 266–276.

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz, A.R., Schmaldienst, S., Stuhlmeier, K.M., Chen, W., Knapp, W., and Zlabinger, G.J. (1992). A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate. J Immunol Methods 156, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, R.A., Plummer, R., Stock, J.K., Greenhalgh, T.A., Ataman, O., Kelly, S., Clay, R., Adams, R.A., Baird, R.D., Billingham, L., et al. (2016). Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol 13, 627–642.

    Article  CAS  PubMed  Google Scholar 

  • Shim, G., Kim, M.G., Kim, D., Park, J.Y., and Oh, Y.K. (2017). Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev 115, 57–81.

    Article  CAS  PubMed  Google Scholar 

  • Sicklick, J.K., Kato, S., Okamura, R., Schwaederle, M., Hahn, M.E., Williams, C.B., De, P., Krie, A., Piccioni, D.E., Miller, V.A., et al. (2019). Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat Med 25, 744–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Wang, Y., Wang, R., Zhang, S., Liu, X., and Liang, X.J. (2019). Targeted nanoparticles for precise cancer therapy. Sci China Life Sci 62, 1392–1395.

    Article  PubMed  Google Scholar 

  • Wang, Q., Xiao, M., Wang, D., Hou, X., Gao, J., Liu, J., and Liu, J. (2021). In situ supramolecular self-assembly of Pt(IV) prodrug to conquer cisplatin resistance. Adv Funct Mater 31, 2101826.

    Article  CAS  Google Scholar 

  • Wang, X., Zhong, X., Liu, Z., and Cheng, L. (2020). Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 35, 100946.

    Article  CAS  Google Scholar 

  • Xia, D., Hang, D., Li, Y., Jiang, W., Zhu, J., Ding, Y., Gu, H., and Hu, Y. (2020). Auhemoglobin loaded platelet alleviating tumor hypoxia and enhancing the radiotherapy effect with low-dose X-ray. ACS Nano 14, 15654–15668.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, H., You, C., Liu, W., Wang, D., Chen, Y., and Dong, C. (2021). Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 277, 121071.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., Hu, X., Li, Q., Yin, M., Song, H., Hu, J., Wang, L., Fan, C., and Chen, N. (2020). Unraveling cell-type-specific targeted delivery of membrane-camouflaged nanoparticles with plasmonic imaging. Nano Lett 20, 5228–5235.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q., Zhang, H., Liu, H., Han, Y., Qiu, W., and Li, Z. (2022). Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials 280, 121287.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Hou, X., Zhang, Y., Wang, D., Liu, J., Huang, F., and Liu, J. (2021). NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release 339, 114–129.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Wang, D., Jia, H., Yang, C., Zhang, Y., Li, H., Liu, J., and Liu, J. (2023). Tumor-specific peroxynitrite overproduction disrupts metabolic homeostasis for sensitizing melanoma immunotherapy. Adv Mater 35, 2301455.

    Article  CAS  Google Scholar 

  • Yong, Y., Cheng, X., Bao, T., Zu, M., Yan, L., Yin, W., Ge, C., Wang, D., Gu, Z., and Zhao, Y. (2015). Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9, 12451–12463.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, M., van Straten, D., Broekman, M.L.D., Préat, V., and Schiffelers, R.M. (2020). Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 10, 1355–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Wang, W., Li, C., Zhang, Y., Yu, T., Wu, R., Zhao, J., Liu, Z., Liu, J., and Yu, H. (2019). Reactive oxygen species-activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies. Adv Funct Mater 29, 1905013.

    Article  CAS  Google Scholar 

  • Zhou, R., Wang, H., Yang, Y., Zhang, C., Dong, X., Du, J., Yan, L., Zhang, G., Gu, Z., and Zhao, Y. (2019). Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials 189, 11–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Fund for Distinguished Young Scholars of China (82225026), the National Natural Science Foundation of China (82172082), and CAMS Innovation Fund for Medical Sciences (2021-I2M-1-042, 2023-I2M-QJ-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Yang or Jianfeng Liu.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cao, H., Zhao, CC. et al. Engineering biomimetic nanosystem targeting multiple tumor radioresistance hallmarks for enhanced radiotherapy. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2528-5

Navigation