Skip to main content
Log in

Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, P., Fontanals-Cirera, B., Sokolova, E., Jacob, S., Vaiana, C.A., Argibay, D., Davalos, V., McDermott, M., Nayak, S., Darvishian, F., et al. (2017). A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell 31, 804–819.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Obaide, M., Ishmakej, A., Brown, C., Mazzella, M., Agosta, P., Perez-Cruet, M., and Chaudhry, G.R. (2022). The potential role of integrin alpha 6 in human mesenchymal stem cells. Front Genet 13, 968228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alunni, A., and Bally-Cuif, L. (2016). A comparative view of regenerative neurogenesis in vertebrates. Development 143, 741–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avgustinova, A., and Benitah, S.A. (2016). Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol 17, 643–658.

    Article  CAS  PubMed  Google Scholar 

  • Bastian, K., Scott, E., Elliott, D.J., and Munkley, J. (2021). FUT8 alpha-(1,6)-fucosyltransferase in cancer. Int J Mol Sci 22, 455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker, D.J., and Lowe, J.B. (2003). Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., Zhuang, Y., Chen, J., Xu, W., Shou, Y., Huang, X., Shu, Q., and Li, X. (2020). Dynamic effects of Fto in regulating the proliferation and differentiation of adult neural stem cells of mice. Hum Mol Genet 29, 727–735.

    Article  CAS  PubMed  Google Scholar 

  • Chang, S., Wang, P., Han, Y., Ma, Q., Liu, Z., Zhong, S., Lu, Y., Chen, R., Sun, L., Wu, Q., et al. (2023). Ferrodifferentiation regulates neurodevelopment via ROS generation. Sci China Life Sci 66, 1841–1857.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Dong, X., Cheng, X., Zhu, Q., Zhang, J., Li, Q., Huang, X., Wang, M., Li, L., Guo, W., et al. (2021). Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep 34, 108905.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Li, Y., Song, Z., Xue, S., Liu, F., Chang, X., Wu, Y., Duan, X., and Wu, H. (2022). O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci USA 119, e2202821119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, J., Wu, Y., Chen, L., Li, Y., Liu, F., Shao, J., Huang, M., Fan, M., and Wu, H. (2020). Loss of O-GlcNAc transferase in neural stem cells impairs corticogenesis. Biochem Biophys Res Commun 532, 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Christian, K.M., Song, H., and Ming, G. (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 37, 243–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11, 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, X., Shu, L., Zhang, J., Yang, X., Cheng, X., Zhao, X., Qu, W., Zhu, Q., Shou, Y., Peng, G., et al. (2023). Ogt-mediated O-GlcNAcylation inhibits astrocytes activation through modulating NF-κB signaling pathway. J Neuroinflammation 20, 146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler, J. (2019). Protein glycosylation. Curr Biol 29, R229–R231.

    Article  CAS  PubMed  Google Scholar 

  • Emsley, J., and Hagg, T. (2003). α6β1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol 183, 273–285.

    Article  CAS  PubMed  Google Scholar 

  • Fowler, G., French, D.V., Rose, A., Squires, P., Aniceto da Silva, C., Ohata, S., Okamoto, H., and French, C.R. (2021). Protein fucosylation is required for Notch dependent vascular integrity in zebrafish. Dev Biol 480, 62–68.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, T., Hashimoto, H., Okayasu, N., Kameyama, A., Onogi, H., Nakagawasai, O., Nakazawa, T., Kurosawa, T., Hao, Y., Isaji, T., et al. (2011). α1,6-Fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype. J Biol Chem 286, 18434–18443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, H., Cheng, X., Chen, J., Ji, C., Guo, H., Qu, W., Dong, X., Chen, Y., Ma, L., Shu, Q., et al. (2020). Fto-modulated lipid niche regulates adult neurogenesis through modulating adenosine metabolism. Hum Mol Genet 29, 2775–2787.

    Article  CAS  PubMed  Google Scholar 

  • Geng, H., Li, Z., Li, Z., Zhang, Y., Gao, Z., Sun, L., Li, X., Cui, J., Ni, S., and Hao, J. (2023). Restoring neuronal iron homeostasis revitalizes neurogenesis after spinal cord injury. Proc Natl Acad Sci USA 120, e2220300120.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, J.T., Schafer, S.T., and Gage, F.H. (2016). Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167, 897–914.

    Article  PubMed  Google Scholar 

  • Gu, W., Fukuda, T., Isaji, T., Hang, Q., Lee, H., Sakai, S., Morise, J., Mitoma, J., Higashi, H., Taniguchi, N., et al. (2015). Loss of α1,6-fucosyltransferase decreases hippocampal long term potentiation. J Biol Chem 290, 17566–17575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, W., Fukuda, T., Isaji, T., Hashimoto, H., Wang, Y., and Gu, J. (2013). α1,6-Fucosylation regulates neurite formation via the activin/phosphor-Smad2 pathway in PC12 cells: the implicated dual effects of Fut8 for TGF-β/activin-mediated signaling. FASEB J 27, 3947–3958.

    Article  CAS  PubMed  Google Scholar 

  • Hall, P.E., Lathia, J.D., Miller, N.G.A., Caldwell, M.A., and Ffrench-Constant, C. (2006). Integrins are markers of human neural stem cells. Stem Cells 24, 2078–2084.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., Jinnou, H., Sawamoto, K., and Hitoshi, S. (2018). Adult neurogenesis and its role in brain injury and psychiatric diseases. J Neurochem 147, 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, J., and Zhao, X. (2016). Genetics and epigenetics in adult neurogenesis. Cold Spring Harb Perspect Biol 8, a018911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Zhang, H.L., Li, Z.L., Du, T., Chen, Y.H., Wang, Y., Ni, H.H., Zhang, K.M., Mai, J., Hu, B.X., et al. (2021). FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun 12, 2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, H., Ying, X., Que, B., Wang, X., Chao, Y., Zhang, H., Yuan, Z., Qi, D., Lin, S., Min, W., et al. (2019). N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. Ebiomedicine 47, 195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebsbach, P.H., and Villa-Diaz, L.G. (2017). The role of integrin α6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells Dev 26, 1090–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein, A., and Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32, 149–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lathia, J.D., Gallagher, J., Heddleston, J.M., Wang, J., Eyler, C.E., MacSwords, J., Wu, Q., Vasanji, A., McLendon, R.E., Hjelmeland, A.B., et al. (2010). Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6, 421–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Zang, L., Zhang, F., Chen, J., Shen, H., Shu, L., Liang, F., Feng, C., Chen, D., Tao, H., et al. (2017). Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 26, 2398–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., and Jin, P. (2010). Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11, 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Q., Su, L., Zhang, D., and Jiao, J. (2020). CD93 negatively regulates astrogenesis in response to MMRN2 through the transcriptional repressor ZFP503 in the developing brain. Proc Natl Acad Sci USA 117, 9413–9422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, L., Mi, D., Llorca, A., and Marín, O. (2018). Development and functional diversification of cortical interneurons. Neuron 100, 294–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S., Zhou, L., Dong, Y., Yang, Q., Yang, Q., Jin, H., Yuan, T., and Zhou, S. (2021). Alpha-(1,6)-fucosyltransferase (FUT8) affects the survival strategy of osteosarcoma by remodeling TNF/NF-κB2 signaling. Cell Death Dis 12, 1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, X., Zhang, D., Shoji, H., Duan, C., Zhang, G., Isaji, T., Wang, Y., Fukuda, T., and Gu, J. (2019). Deficiency of α1,6-fucosyltransferase promotes neuroinflammation by increasing the sensitivity of glial cells to inflammatory mediators. Biochim Biophys Acta Gen Subj 1863, 598–608.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, E., Noda, K., Yamaguchi, Y., Inoue, S., Ikeda, Y., Wang, W., Ko, J.H., Uozumi, N., Li, W., and Taniguchi, N. (1999). The α1-6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta Gen Subj 1473, 9–20.

    Article  CAS  Google Scholar 

  • Mueller, T.M., Yates, S.D., Haroutunian, V., and Meador-Woodruff, J.H. (2017). Altered fucosyltransferase expression in the superior temporal gyrus of elderly patients with schizophrenia. Schizophr Res 182, 66–73.

    Article  PubMed  Google Scholar 

  • Müller, L., Mares, V., Sýkorová, J., and Biesold, D. (1985). Regional and cellular differences in fucosylation of glycomacromolecules in the mouse brain. A biochemical and autoradiographic study of early postnatal and adolescent animals. Neuroscience 14, 875–880.

    Article  PubMed  Google Scholar 

  • Ng, B.G., Dastsooz, H., Silawi, M., Habibzadeh, P., Jahan, S.B., Fard, M.A.F., Halliday, B.J., Raymond, K., Ruzhnikov, M.R.Z., Tabatabaei, Z., et al. (2020). Expanding the molecular and clinical phenotypes of FUT8-CDG. J Inher Metab Disea 43, 871–879.

    Article  CAS  Google Scholar 

  • Ng, B.G., and Freeze, H.H. (2018). Perspectives on glycosylation and its congenital disorders. Trends Genet 34, 466–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, B.G., Xu, G., Chandy, N., Steyermark, J., Shinde, D.N., Radtke, K., Raymond, K., Lebrilla, C.B., AlAsmari, A., Suchy, S.F., et al. (2018). Biallelic mutations in FUT8 cause a congenital disorder of glycosylation with defective fucosylation. Am J Hum Genet 102, 188–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Nicolau, N., de la Torre, R.M., Fariñas, O., Savio, A., Vilarrodona, A., and Casaroli-Marano, R.P. (2020). Extrinsic modulation of integrin α6 and progenitor cell behavior in mesenchymal stem cells. Stem Cell Res 47, 101899.

    Article  CAS  PubMed  Google Scholar 

  • Parker, K.A., Gooding, A.J., Valadkhan, S., and Schiemann, W.P. (2021). lncRNA BORG:TRIM28 complexes drive metastatic progression by inducing α6 integrin/CD49f expression in breast cancer stem cells. Mol Cancer Res 19, 2068–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, Y., Shan, Y., Li, S., Huang, Y., Guo, Y., Huang, T., Zhao, X., and Jia, L. (2022). LncRNA LEF1-AS1/LEF1/FUT8 axis mediates colorectal cancer progression by regulating α1, 6-fucosylationvia Wnt/β-catenin pathway. Dig Dis Sci 67, 2182–2194.

    Article  CAS  PubMed  Google Scholar 

  • Santos, C.P., Lapi, E., Martínez de Villarreal, J., Álvaro-Espinosa, L., Fernández-Barral, A., Barbáchano, A., Domínguez, O., Laughney, A.M., Megías, D., Muñoz, A., et al. (2019). Urothelial organoids originating from Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 10, 4407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider, M., Al-Shareffi, E., and Haltiwanger, R.S. (2017). Biological functions of fucose in mammals. Glycobiology 27, 601–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, H., Zhao, X., Chen, J., Qu, W., Huang, X., Wang, M., Shao, Z., Shu, Q., and Li, X. (2021). O-GlcNAc transferase Ogt regulates embryonic neuronal development through modulating Wnt/β-catenin signaling. Hum Mol Genet 31, 57–68.

    Article  PubMed  Google Scholar 

  • Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.M., Goderie, S.K., Roysam, B., and Temple, S. (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttapitugsakul, S., Stavenhagen, K., Donskaya, S., Bennett, D.A., Mealer, R.G., Seyfried, N.T., and Cummings, R.D. (2022). Glycoproteomics landscape of asymptomatic and symptomatic human Alzheimer’s disease brain. Mol Cell Proteomics 21, 100433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhooren, V., Dewaele, S., Kuro-o, M., Taniguchi, N., Dollé, L., van Grunsven, L.A., Makrantonaki, E., Zouboulis, C.C., Chen, C.C., and Libert, C. (2011). Alteration in N-glycomics during mouse aging: a role for FUT8. Aging Cell 10, 1056–1066.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Gu, J., Miyoshi, E., Honke, K., and Taniguchi, N. (2006). Phenotype changes of Fut8 knockout mouse: core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol 417, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Inoue, S., Gu, J., Miyoshi, E., Noda, K., Li, W., Mizuno-Horikawa, Y., Nakano, M., Asahi, M., Takahashi, M., et al. (2005). Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci USA 102, 15791–15796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, W., and Jiao, J. (2017). Histone variant H3.3 orchestrates neural stem cell differentiation in the developing brain. Cell Death Differ 24, 1548–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M. K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19, 971–974.

    Article  CAS  PubMed  Google Scholar 

  • Yao, B., Christian, K.M., He, C., Jin, P., Ming, G., and Song, H. (2016). Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 17, 537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Park, C.Y., Theesfeld, C.L., Wong, A.K., Yuan, Y., Scheckel, C., Fak, J.J., Funk, J., Yao, K., Tajima, Y., et al. (2019). Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet 51, 973–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Qu, J., He, L., Peng, H., Chen, P., and Zhou, Y. (2018). α6-Integrin alternative splicing: distinct cytoplasmic variants in stem cell fate specification and niche interaction. Stem Cell Res Ther 9, 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (92049108, 82371182), Central Guiding Fund for Local Science and Technology Development Projects (2023ZY1058) and the National Key Research and Development Program of China (2017YFE0196600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Shu or Xuekun Li.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Sun, Q., Huang, X. et al. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2510-0

Navigation