Skip to main content
Log in

Local field potentials, spiking activity, and receptive fields in human visual cortex

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The concept of receptive field (RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals, while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials (LFPs) and spiking activity in human visual cortex (V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from low-frequency activity (LFA, 0.5–30 Hz) were larger than those estimated from low-gamma activity (LGA, 30–60 Hz) and high-gamma activity (HGA, 60–150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z.J., and Scanziani, M. (2012). A neural circuit for spatial summation in visual cortex. Nature 490, 226–231.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Andoni, S., Tan, A., and Priebe, N. (2013). The cortical assembly of visual receptive fields. In: Werner, J.S., and Leo, M., eds. The New Visual Neurosciences. Cambridge: MIT Press. 367–380.

    Google Scholar 

  • Angelucci, A., Levitt, J.B., Walton, E.J.S., Hupé, J.M., Bullier, J., and Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. J Neurosci 22, 8633–8646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelucci, A., Bijanzadeh, M., Nurminen, L., Federer, F., Merlin, S., and Bressloff, P.C. (2017). Circuits and mechanisms for surround modulation in visual cortex. Annu Rev Neurosci 40, 425–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aquino, T.G., Minxha, J., Dunne, S., Ross, I.B., Mamelak, A.N., Rutishauser, U., and O’Doherty, J.P. (2020). Value-related neuronal responses in the human amygdala during observational learning. J Neurosci 40, 4761–4772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli, E., Bosking, W., Chen, Y., Li, Y., Sheth, S.A., Beauchamp, M.S., Yoshor, D., and Foster, B.L. (2019). Functionally distinct gamma range activity revealed by stimulus tuning in human visual cortex. Curr Biol 29, 3345–3358.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.M., Oostenveld, R., Dowdall, J.R., De Weerd, P., Kennedy, H., and Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, R., Brosch, M., and Eckhorn, R. (1995). Different rules of spatial summation from beyond the receptive field for spike rates and oscillation amplitudes in cat visual cortex. Brain Res 669, 291–297.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu-Laroche, L., Toloza, E.H.S., van der Goes, M.S., Lafourcade, M., Barnagian, D., Williams, Z.M., Eskandar, E.N., Frosch, M.P., Cash, S.S., and Harnett, M.T. (2018). Enhanced dendritic compartmentalization in human cortical neurons. Cell 175, 643–651.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N. K., and Panzeri, S. (2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28, 5696–5709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, N.C., Butt, O.H., Brainard, D.H., and Aguirre, G.K. (2014). Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Comput Biol 10, e1003538.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp, M.S., Oswalt, D., Sun, P., Foster, B.L., Magnotti, J.F., Niketeghad, S., Pouratian, N., Bosking, W.H., and Yoshor, D. (2020). Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 181, 774–783.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasdel, G.G., and Fitzpatrick, D. (1984). Physiological organization of layer 4 in macaque striate cortex. J Neurosci 4, 880–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldog, E., Bakken, T.E., Hodge, R.D., Novotny, M., Aevermann, B.D., Baka, J., Bordé, S., Close, J.L., Diez-Fuertes, F., Ding, S.L., et al. (2018). Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat Neurosci 21, 1185–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosking, W.H., Sun, P., Ozker, M., Pei, X., Foster, B.L., Beauchamp, M.S., and Yoshor, D. (2017). Saturation in phosphene size with increasing current levels delivered to human visual cortex. J Neurosci 37, 7188–7197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet, N.M., and Fries, P. (2019). Human visual cortical gamma reflects natural image structure. NeuroImage 200, 635–643.

    Article  PubMed  Google Scholar 

  • Burns, S.P., Xing, D., and Shapley, R.M. (2010). Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex. J Neurosci 30, 13739–13749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–1929.

    Article  ADS  PubMed  Google Scholar 

  • Dale, A.M., Fischl, B., and Sereno, M.I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Davidesco, I., Harel, M., Ramot, M., Kramer, U., Kipervasser, S., Andelman, F., Neufeld, M.Y., Goelman, G., Fried, I., and Malach, R. (2013). Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy. J Neurosci 33, 1228–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134, 9–21.

    Article  PubMed  Google Scholar 

  • Dubey, A., and Ray, S. (2020). Comparison of tuning properties of gamma and high-gamma power in local field potential (LFP) versus electrocorticogram (ECoG) in visual cortex. Sci Rep 10, 5422.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Dumoulin, S.O., and Wandell, B.A. (2008). Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660.

    Article  PubMed  Google Scholar 

  • Engel, S.A., Glover, G.H., and Wandell, B.A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7, 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, B., and Wegener, D. (2021). Monkey V1 epidural field potentials provide detailed information about stimulus location, size, shape, and color. Commun Biol 4, 1–3.

    Article  Google Scholar 

  • Fischl, B., and Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97, 11050–11055.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Foster, B.L., Rangarajan, V., Shirer, W.R., and Parvizi, J. (2015). Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracasso, A., Petridou, N., and Dumoulin, S.O. (2016). Systematic variation of population receptive field properties across cortical depth in human visual cortex. NeuroImage 139, 427–438.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., and Penny, W.D. (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Amsterdam: Elsevier.

    Google Scholar 

  • Fu, Y., Yan, W., Shen, M., and Chen, H. (2021). Does consciousness overflow cognitive access? Novel insights from the new phenomenon of attribute amnesia. Sci China Life Sci 64, 847–860.

    Article  ADS  PubMed  Google Scholar 

  • Gattass, R., Gross, C.G., and Sandell, J.H. (1981). Visual topography of V2 in the macaque. J Comp Neurol 201, 519–539.

    Article  CAS  PubMed  Google Scholar 

  • Gieselmann, M.A., and Thiele, A. (2008). Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. Eur J Neurosci 28, 447–459.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, C.D., Hirsch, J.A., and Wiesel, T.N. (1990). Lateral interactions in visual cortex. Cold Spring Harb Symp Quant Biol 55, 663–677.

    Article  CAS  PubMed  Google Scholar 

  • Golan, T., Davidesco, I., Meshulam, M., Groppe, D.M., Mégevand, P., Yeagle, E.M., Goldfinger, M.S., Harel, M., Melloni, L., Schroeder, C.E., et al. (2017). Increasing suppression of saccade-related transients along the human visual hierarchy. eLife 6, e27819.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, C., Wang, T., Yang, Y., Wu, Y., Li, Y., Dai, W., Zhang, Y., Wang, B., Yang, G., Cao, Z., et al. (2021). Multiple gamma rhythms carry distinct spatial frequency information in primary visual cortex. PLoS Biol 19, e3001466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermes, D., Miller, K.J., Wandell, B.A., and Winawer, J. (2014). Stimulus dependence of gamma oscillations in human visual cortex. Cereb Cortex 25, 2951–2959.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermes, D., Miller, K.J., Wandell, B.A., and Winawer, J. (2015). Gamma oscillations in visual cortex: the stimulus matters. Trends Cogn Sci 19, 57–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermes, D., Petridou, N., Kay, K.N., and Winawer, J. (2019). An image-computable model for the stimulus selectivity of gamma oscillations. eLife 8, e47035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148, 574–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, O., Bonnefond, M., Marshall, T.R., and Tiesinga, P. (2015). Oscillatory mechanisms of feedforward and feedback visual processing. Trends Neuroscis 38, 192–194.

    Article  CAS  Google Scholar 

  • Kaas, J.H., and Herculano-Houzel, S. (2017). What makes the human brain special: key features of brain and neocortex. In: Opris, I., and Casanova, M.F., eds. The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems. Cham: Springer. 3–22.

    Chapter  Google Scholar 

  • Keliris, G.A., Li, Q., Papanikolaou, A., Logothetis, N.K., and Smirnakis, S.M. (2019). Estimating average single-neuron visual receptive field sizes by fMRI. Proc Natl Acad Sci USA 116, 6425–6434.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception 36, 1–16.

    Google Scholar 

  • Klink, P.C., Chen, X., Vanduffel, W., and Roelfsema, P.R. (2021). Population receptive fields in nonhuman primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. eLife 10, e67304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreiman, G., Hung, C.P., Kraskov, A., Quiroga, R.Q., Poggio, T., and DiCarlo, J.J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49, 433–445.

    Article  CAS  PubMed  Google Scholar 

  • Leszczynski, M., Barczak, A., Kajikawa, Y., Ulbert, I., Falchier, A.Y., Tal, I., Haegens, S., Melloni, L., Knight, R.T., and Schroeder, C.E. (2020). Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. Sci Adv 6, eabb0977.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Levitt, J.B., and Lund, J.S. (2002). The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci 19, 439–452.

    Article  PubMed  Google Scholar 

  • Lu, J., Luo, L., Wang, Q., Fang, F., and Chen, N. (2021). Cue-triggered activity replay in human early visual cortex. Sci China Life Sci 64, 144–151.

    Article  PubMed  Google Scholar 

  • Mamelak, A.N. (2014). Ethical and practical considerations for human microelectrode recording studies. In: Fried, I., Rutishauser, U., Cerf, M., and Kreiman, G., eds. Single Neuron Studies of the Human Brain: Probing Cognition. Cambridge: MIT Press. 27–42.

    Google Scholar 

  • Marg, E., Adams, J.E., and Rutkin, B. (1968). Receptive fields of cells in the human visual cortex. Experientia 24, 348–350.

    Article  CAS  PubMed  Google Scholar 

  • Martin, A.B., Yang, X., Saalmann, Y.B., Wang, L., Shestyuk, A., Lin, J.J., Parvizi, J., Knight, R.T., and Kastner, S. (2019). Temporal dynamics and response modulation across the human visual system in a spatial attention task: an ECoG study. J Neurosci 39, 333–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.M., Kennedy, H., and Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra, A., Burke, J.F., Ramayya, A.G., Jacobs, J., Sperling, M.R., Moxon, K.A., Kahana, M.J., Evans, J.J., and Sharan, A.D. (2014). Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. J Neural Eng 11, 026013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minxha, J., Adolphs, R., Fusi, S., Mamelak, A.N., and Rutishauser, U. (2020). Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science 368, eaba3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309, 951–954.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Mukamel, R., Nir, Y., Harel, M., Arieli, A., Malach, R., and Fried, I. (2011). Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Hum Brain Mapp 32, 1181–1193.

    Article  PubMed  Google Scholar 

  • Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., and Malach, R. (2007). Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17, 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Onorato, I., Neuenschwander, S., Hoy, J., Lima, B., Rocha, K.S., Broggini, A.C., Uran, C., Spyropoulos, G., Klon-Lipok, J., Womelsdorf, T., et al. (2020). A distinct class of bursting neurons with strong gamma synchronization and stimulus selectivity in monkey V1. Neuron 105, 180–197.e5.

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 1–9.

    Article  Google Scholar 

  • Parvizi, J., and Kastner, S. (2018). Promises and limitations of human intracranial electroencephalography. Nat Neurosci 21, 474–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perge, J.A., Zhang, S., Malik, W.Q., Homer, M.L., Cash, S., Friehs, G., Eskandar, E.N., Donoghue, J.P., and Hochberg, L.R. (2014). Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. J Neural Eng 11, 046007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter, A., Uran, C., Klon-Lipok, J., Roese, R., van Stijn, S., Barnes, W., Dowdall, J.R., Singer, W., Fries, P., and Vinck, M. (2019). Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 8, e42101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pryluk, R., Kfir, Y., Gelbard-Sagiv, H., Fried, I., and Paz, R. (2019). A tradeoff in the neural code across regions and species. Cell 176, 597–609.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasch, M.J., Gretton, A., Murayama, Y., Maass, W., and Logothetis, N.K. (2008). Inferring spike trains from local field potentials. J Neurophysiol 99, 1461–1476.

    Article  PubMed  Google Scholar 

  • Ray, S., Crone, N.E., Niebur, E., Franaszczuk, P.J., and Hsiao, S.S. (2008a). Neural correlates of high-gamma oscillations (60–200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28, 11526–11536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, S., Hsiao, S.S., Crone, N.E., Franaszczuk, P.J., and Niebur, E. (2008b). Effect of stimulus intensity on the spike-local field potential relationship in the secondary somatosensory cortex. J Neurosci 28, 7334–7343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, S., and Maunsell, J.H.R. (2011a). Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9, e1000610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, S., and Maunsell, J.H.R. (2011b). Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31, 12674–12682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2006). Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154, 204–224.

    Article  PubMed  Google Scholar 

  • Self, M.W., Peters, J.C., Possel, J.K., Reithler, J., Goebel, R., Ris, P., Jeurissen, D., Reddy, L., Claus, S., Baayen, J.C., et al. (2016). The effects of context and attention on spiking activity in human early visual cortex. PLoS Biol 14, e1002420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R., and Tootell, R.B.H. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Stettler, D.D., Das, A., Bennett, J., and Gilbert, C.D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36, 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., and Leahy, R.M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011, 879716.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.A., Poort, J., van der Togt, C., and Roelfsema, P.R. (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci USA 111, 14332–14341.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  • Wandell, B.A., Dumoulin, S.O., and Brewer, A.A. (2007). Visual field maps in human cortex. Neuron 56, 366–383.

    Article  CAS  PubMed  Google Scholar 

  • Wandell, B.A., and Winawer, J. (2015). Computational neuroimaging and population receptive fields. Trends Cogn Sci 19, 349–357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner, J.S., and Spillmann, L. (1990). Visual Perception: The Neurophysiological Foundations. New York: Academic Press.

    Google Scholar 

  • Williams, A.L., Singh, K.D., and Smith, A.T. (2003). Surround modulation measured with functional MRI in the human visual cortex. J Neurophysiol 89, 525–533.

    Article  PubMed  Google Scholar 

  • Wilson, C.L., Babb, T.L., Halgren, E., and Crandall, P.H. (1983). Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways. Brain 106, 473–502.

    Article  PubMed  Google Scholar 

  • Winawer, J., Kay, K.N., Foster, B.L., Rauschecker, A.M., Parvizi, J., and Wandell, B.A. (2013). Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Curr Biol 23, 1145–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winawer, J., and Parvizi, J. (2016). Linking electrical stimulation of human primary visual cortex, size of affected cortical area, neuronal responses, and subjective experience. Neuron 92, 1213–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshor, D., Bosking, W.H., Ghose, G.M., and Maunsell, J.H.R. (2007). Receptive fields in human visual cortex mapped with surface electrodes. Cereb Cortex 17, 2293–2302.

    Article  PubMed  Google Scholar 

  • Zanos, S., Zanos, T.P., Marmarelis, V.Z., Ojemann, G.A., and Fetz, E.E. (2012). Relationships between spike-free local field potentials and spike timing in human temporal cortex. J Neurophysiol 107, 1808–1821.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Zhang, Y.Y., and Fang, F. (2020). Neural mechanisms of feature binding. Sci China Life Sci 63, 926–928.

    Article  ADS  PubMed  Google Scholar 

  • Zhang, Z., Zhang, H., Xie, C.M., Zhang, M., Shi, Y., Song, R., Lu, X., Zhang, H., Li, K., Wang, B., et al. (2021). Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex. Sci China Life Sci 64, 96–106.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Zhou, J., Benson, N.C., Kay, K., and Winawer, J. (2019). Predicting neuronal dynamics with a delayed gain control model. PLoS Comput Biol 15, e1007484.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science and Technology Innovation 2030 Major Program (2022ZD0204802, 2022ZD0204804), the National Natural Science Foundation of China (31930053, 32171039), and Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Wang or Fang Fang.

Ethics declarations

The authors declare no competing Interests. All authors state that they conformed with the Helsinki Declaration of 1975 (as revised in 2008) concerning Human and Animal Rights, and that they followed the policy concerning Informed Consent as shown on Springer.com.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Wang, X., Lu, J. et al. Local field potentials, spiking activity, and receptive fields in human visual cortex. Sci. China Life Sci. 67, 543–554 (2024). https://doi.org/10.1007/s11427-023-2436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2436-x

Navigation