Skip to main content
Log in

Ultrasound-responsive spherical nucleic acid against c-Myc/PD-L1 to enhance anti-tumoral macrophages in triple-negative breast cancer progression

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype because of its aggressive behavior and limited therapeutic targets. c-Myc is hyperactivated in the majority of TNBC tissues, however, it has been considered an “undruggable” target due to its disordered structure. Herein, we developed an ultrasound-responsive spherical nucleic acid (SNA) against c-Myc and PD-L1 in TNBC. It is a self-assembled and carrier-free system composed of a hydrophilic small-interfering RNA (siRNA) shell and a hydrophobic core made of a peptide nucleic acid (PNA)-based antisense oligonucleotide (ASO) and a sonosensitizer. We accomplished significant enrichment in the tumor by enhanced permeability and retention (EPR) effect, the controllable release of effective elements by ultrasound activation, and the combination of targeted therapy, immunotherapy and physiotherapy. Our study demonstrated significant anti-tumoral effects in vitro and in vivo. Mass cytometry showed an invigorated tumor microenvironment (TME) characterized by a significant alteration in the composition of tumor-associated macrophages (TAM) and decreased proportion of PD-1-positive (PD-1+) T effector cells after appropriate treatment of the ultrasound-responsive SNA (USNA). Further experiments verified that tumor-conditioned macrophages residing in the TME were transformed into the anti-tumoral population. Our finding offers a novel therapeutic strategy against the “undruggable” c-Myc, develops a new targeted therapy for c-Myc/PD-L1 and provides a treatment option for the TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andresen, C., Helander, S., Lemak, A., Farès, C., Csizmok, V., Carlsson, J., Penn, L.Z., Forman-Kay, J.D., Arrowsmith, C.H., Lundström, P., et al. (2012). Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res 40, 6353–6366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buechler, M.B., Fu, W., and Turley, S.J. (2021). Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Z., and Liu, Q. (2021). Understanding the global cancer statistics 2018: implications for cancer control. Sci China Life Sci 64, 1017–1020.

    Article  PubMed  Google Scholar 

  • Callmann, C.E., Kusmierz, C.D., Ditttmar, J.W., Broger, L., and Mirkin, C.A. (2021). Impact of liposomal spherical nucleic acid structure on immunotherapeutic function. ACS Cent Sci 7, 892–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardillo, T.M., Sharkey, R.M., Rossi, D.L., Arrojo, R., Mostafa, A.A., and Goldenberg, D.M. (2017). Synthetic lethality exploitation by an anti—Trop-2-SN-38 antibody—drug conjugate, IMMU-132, Plus PARP Inhibitors in BRCAl/2-wild-type triple-negative breast cancer. Clin Cancer Res 23, 3405–3415.

    Article  CAS  PubMed  Google Scholar 

  • Carey, J.P.W., Karakas, C., Bui, T., Chen, X., Vijayaraghavan, S., Zhao, Y., Wang, J., Mikule, K., Litton, J.K., Hunt, K.K., et al. (2018). Synthetic lethality of parp inhibitors in combination with MYC blockade is independent of BRCA status in triple-negative breast cancer. Cancer Res 78, 742–757.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Li, G., Wang, X., Li, J., and Zhang, Y. (2021). Spherical nucleic acids for near-infrared light-responsive self-delivery of small-interfering RNA and antisense oligonucleotide. ACS Nano 15, 11929–11939.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., and Song, E. (2022). The theory of tumor ecosystem. Cancer Commun 42, 587–608.

    Article  Google Scholar 

  • Chu, Z., Chen, H., Wang, P., Wang, W., Yang, J., Sun, J., Chen, B., Tian, T., Zha, Z., Wang, H., et al. (2022). Phototherapy using a fluoroquinolone antibiotic drug to suppress tumor migration and proliferation and to enhance apoptosis. ACS Nano 16, 4917–4929.

    Article  CAS  PubMed  Google Scholar 

  • D’Artista, L., Moschopoulou, A.A., Barozzi, I., Craig, A.J., Seehawer, M., Herrmann, L., Minnich, M., Kang, T.W., Rist, E., Henning, M., et al. (2023). MYC determines lineage commitment in KRAS-driven primary liver cancer development. J Hepatol 79, 141–149.

    Article  PubMed  Google Scholar 

  • Donati, G., Nicoli, P., Verrecchia, A., Vallelonga, V., Croci, O., Rodighiero, S., Audano, M., Cassina, L., Ghsein, A., Binelli, G., et al. (2023). Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med 15, e16910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards-Hicks, J., Su, H., Mangolini, M., Yoneten, K.K., Wills, J., Rodriguez-Blanco, G., Young, C., Cho, K., Barker, H., Muir, M., et al. (2022). MYC sensitises cells to apoptosis by driving energetic demand. Nat Commun 13, 4674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikesdal, H.P., Yndestad, S., Elzawahry, A., Llop-Guevara, A., Gilje, B., Blix, E.S., Espelid, H., Lundgren, S., Geisler, J., Vagstad, G., et al. (2021). Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol 32, 240–249.

    Article  CAS  PubMed  Google Scholar 

  • Finck, R., Simonds, E.F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe’er, D., Nolan, G.P., and Bendall, S.C. (2013). Normalization of mass cytometry data with bead standards. Cytometry A 83A, 483–494.

    Article  CAS  Google Scholar 

  • Gao, F., Li, X., Xu, K., Wang, R., and Guan, X. (2023). c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal 21, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, H., Jain, A.D., Truica, M.I., Izquierdo-Ferrer, J., Anker, J.F., Lysy, B., Sagar, V., Luan, Y., Chalmers, Z.R., Unno, K., et al. (2019). Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36, 483–497.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley, G.P., Chow, L., Ammons, D.T., Wheat, W.H., and Dow, S.W. (2018). Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res 6, 1260–1273.

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi, D., Kusdra, L., Huskey, N.E., Chandriani, S., Lenburg, M.E., Gonzalez-Angulo, A.M., Creasman, K.J., Bazarov, A.V., Smyth, J.W., Davis, S.E., et al. (2012). MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209, 679–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, S.A., Day, E.S., Ko, C.H., Hurley, L.A., Luciano, J.P., Kouri, F.M., Merkel, T.J., Luthi, A.J., Patel, P.C., Cutler, J.I., et al. (2013). Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5, 209ra152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji, W., Zhang, W., Wang, X., Shi, Y., Yang, F., Xie, H., Zhou, W., Wang, S., and Guan, X. (2020). c-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis. Cell Death Dis 11, 760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, X., Tsang, Y.H., and Yu, Q. (2007). c-Myc overexpression sensitizes Bim-mediated Bax activation for apoptosis induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through regulating Bcl-2/Bcl-xL expresion. Int J Biochem Cell Biol 39, 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  • Ju, W., Zheng, R., Zhang, S., Zeng, H., Sun, K., Wang, S., Chen, R., Li, L., Wei, W., and He, J. (2023). Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the republic of Korea. Sci China Life Sci 66, 1079–1091.

    Article  PubMed  Google Scholar 

  • Kulkarni, J.A., Witzigmann, D., Thomson, S.B., Chen, S., Leavitt, B.R., Cullis, P.R., and van der Meel, R. (2021). The current landscape of nucleic acid therapeutics. Nat Nanotechnol 16, 630–643.

    Article  CAS  PubMed  Google Scholar 

  • Kumthekar, P., Ko, C.H., Paunesku, T., Dixit, K., Sonabend, A.M., Bloch, O., Tate, M., Schwartz, M., Zuckerman, L., Lezon, R., et al. (2021). A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med 13, eabb3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.V., Housley, F., Yau, C., Nakagawa, R., Winkler, J., Anttila, J.M., Munne, P.M., Savelius, M., Houlahan, K.E., Van de Mark, D., et al. (2022a). Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun 13, 3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K., Lin, C.C., Servetto, A., Bae, J., Kandagatla, V., Ye, D., Kim, G.M., Sudhan, D.R., Mendiratta, S., González Ericsson, P.I., et al. (2022b). Epigenetic repression of STING by MYC promotes immune evasion and resistance to immune checkpoint inhibitors in triple-negative breast cancer. Cancer Immunol Res 10, 829–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir, E.D., Tadmor, M.D., Litvin, O., Fienberg, H.G., Jager, A., Zunder, E.R., et al. (2015). Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Xiao, Y., Li, Q., Yao, J., Yuan, X., Zhang, Y., Yin, X., Saito, Y., Fan, H., Li, P., et al. (2022a). The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell 40, 36–52.e9.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Liu, R., Su, X., Pan, Y., Han, X., Shao, C., and Shi, Y. (2019). Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer 18, 177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Tang, L., Chen, Q., Cheng, X., Liu, Y., Wang, C., Zhu, C., Xu, K., Gao, F., Huang, J., et al. (2022b). Inhibition of MYC suppresses programmed cell death ligand-1 expression and enhances immunotherapy in triple-negative breast cancer. Chin Med J 135, 2436–2445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Zhang, Z., Gao, F., Ma, Y., Wei, D., Lu, Z., Chen, S., Wang, M., Wang, Y., Xu, K., et al. (2023). c-Myc-targeting PROTAC based on a TNA-DNA bivalent binder for combination therapy of triple-negative breast cancer. J Am Chem Soc 145, 9334–9342.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Shao, S., Ren, X., Sun, J., Guo, Z., Wang, S., Song, M.M., Chang, C.A., and Xue, M. (2018). Construction of a sequenceable protein mimetic peptide library with a true 3D diversifiable chemical space. J Am Chem Soc 140, 14552–14556.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhu, C., Tang, L., Chen, Q., Guan, N., Xu, K., and Guan, X. (2021). MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci 17, 178–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty Pyke, R., Thompson, W.K., Salem, R.M., Font-Burgada, J., Zanetti, M., and Carter, H. (2018). Evolutionary pressure against MHC class II binding cancer mutations. Cell 175, 416–428.e13.

    Article  PubMed  Google Scholar 

  • Nishimura, Y., Mieda, H., Ishii, J., Ogino, C., Fujiwara, T., and Kondo, A. (2013). Targeting cancer cell-specific RNA interference by siRNA delivery using a complex carrier of affibody-displaying bio-nanocapsules and liposomes. J Nanobiotechnol 11, 19.

    Article  CAS  Google Scholar 

  • Potts, M.A., Mizutani, S., Garnham, A.L., Li Wai Suen, C.S.N., Kueh, A.J., Tai, L., Pal, M., Strasser, A., and Herold, M.J. (2023). Deletion of the transcriptional regulator TFAP4 accelerates c-MYC-driven lymphomagenesis. Cell Death Differ 30, 1447–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, S., Jiao, Z., Lu, G., Yao, B., Wang, T., Rong, W., Xu, J., Fan, T., Sun, X., Yang, R., et al. (2021). PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol 22, 104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, L., Zhao, S.K., Wen, C., Tian, R., Lin, L., Cai, B., Sun, Y., Kang, F., Yang, Z., He, L., et al. (2020). Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv Mater 32, 2004853.

    Article  CAS  Google Scholar 

  • Robson, M., Im, S.A., Senkus, E., Xu, B., Domchek, S.M., Masuda, N., Delaloge, S., Li, W., Tung, N., Armstrong, A., et al. (2017). Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377, 523–533.

    Article  CAS  PubMed  Google Scholar 

  • Rottman, J.B., Smith, T., Tonra, J.R., Ganley, K., Bloom, T., Silva, R., Pierce, B., Gutierrez-Ramos, J.C., Özkaynak, E., and Coyle, A.J. (2001). The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat Immunol 2, 605–611.

    Article  CAS  PubMed  Google Scholar 

  • Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., McDonald, C., Chen, Z., Murphy, J.W., Lolis, E., et al. (2006). CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25, 595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122, 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel, R.L., Miller, K.D., Wagle, N.S., and Jemal, A. (2023). Cancer statistics, 2023. CA Cancer J Clin 73, 17–48.

    Article  PubMed  Google Scholar 

  • Takenaka, M.C., Gabriely, G., Rothhammer, V., Mascanfroni, I.D., Wheeler, M.A., Chao, C.C., Gutiérrez-Vázquez, C., Kenison, J., Tjon, E.C., Barroso, A., et al. (2019). Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci 22, 729–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J Mach Learn Res, 9, 2579–2605.

    Google Scholar 

  • Wang, R., Xu, K., Chen, Q., Hu, Q., Zhang, J., and Guan, X. (2023). Cuproptosis engages in c-Myc-mediated breast cancer stemness. J Transl Med 21, 409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Xu, K., Gao, F., Huang, J., and Guan, X. (2021a). Clinical considerations of CDK4/6 inhibitors in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer 1876, 188590.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Li, F., Ye, T., Wang, J., Lyu, C., Qing, S., Ding, Z., Gao, X., Jia, R., Yu, D., et al. (2021b). Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci Transl Med 13, eabb6981.

    Article  CAS  PubMed  Google Scholar 

  • Xu, K., Wang, R., Chen, Q., Liu, Y., Li, X., Mao, L., Wang, C., Gao, F., Hu, L., Xie, H., et al. (2022). Microenvironment components and spatially resolved single-cell transcriptome atlas of breast cancer metastatic axillary lymph nodes. Acta Biochim Biophys Sin 54, 1336–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Li, H., Pu, W., Chen, L., Guo, D., Jiang, H., He, B., Qin, S., Wang, K., Li, N., et al. (2022). Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci 65, 236–279.

    Article  CAS  PubMed  Google Scholar 

  • Zagami, P., and Carey, L.A. (2022). Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer 8, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zunder, E.R., Finck, R., Behbehani, G.K., Amir, E.D., Krishnaswamy, S., Gonzalez, V. D., Lorang, C.G., Bjornson, Z., Spitzer, M.H., Bodenmiller, B., et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc 10, 316–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81920108029, 22077063, 22322703) and the Key Foundation for Social Development Project of Jiangsu Province of China (BE2021741).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang, Jinbo Li or Xiaoxiang Guan.

Ethics declarations

The author(s) declare that they have no conflict of Interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Li, G., Gao, F. et al. Ultrasound-responsive spherical nucleic acid against c-Myc/PD-L1 to enhance anti-tumoral macrophages in triple-negative breast cancer progression. Sci. China Life Sci. 67, 698–710 (2024). https://doi.org/10.1007/s11427-023-2433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2433-y

Navigation