Skip to main content
Log in

Rab18 maintains homeostasis of subcutaneous adipose tissue to prevent obesity-induced metabolic disorders

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders. These people store fat in subcutaneous adipose tissue (SAT) rather than in visceral adipose tissue (VAT). However, the molecules participating in this specific scenario remain elusive. Rab18, a lipid droplet (LD)-associated protein, mediates the contact between the endoplasmic reticulum (ER) and LDs to facilitate LD growth and maturation. In the present study, we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice. Rab18 adipocyte-specific knockout (Rab18 AKO) mice had a decreased volume ratio of SAT to VAT compared with wildtype mice. When subjected to high-fat diet (HFD), Rab18 AKO mice had increased ER stress and inflammation, reduced adiponectin, and decreased triacylglycerol (TAG) accumulation in SAT. In contrast, TAG accumulation in VAT, brown adipose tissue (BAT) or liver of Rab18 AKO mice had a moderate increase without ER stress stimulation. Rab18 AKO mice developed insulin resistance and systematic inflammation. Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT, similar to the counterpart mice. Furthermore, Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress, indicating the involvement of Rab18 in alleviating lipid toxicity. Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT. In conclusion, our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becuwe, M., Bond, L.M., Pinto, A.F.M., Boland, S., Mejhert, N., Elliott, S.D., Cicconet, M., Graham, M.M., Liu, X.N., Ilkayeva, O., et al. (2020). FIT2 is an acyl-coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis. J Cell Biol 219, 10.

    Article  Google Scholar 

  • Bem, D., Yoshimura, S.I., Nunes-Bastos, R., Bond, F.F., Kurian, M.A., Rahman, F., Handley, M.T.W., Hadzhiev, Y., Masood, I., Straatman-Iwanowska, A.A., et al. (2011). Loss-of-function mutations in RAB18 cause Warburg Micro syndrome. Am J Hum Genet 88, 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blüher, M. (2020). Metabolically healthy obesity. Endocrine Rev 41, 405–420.

    Article  Google Scholar 

  • Carobbio, S., Pellegrinelli, V., and Vidal-Puig, A. (2017). Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv Exp Med Biol 960, 161–196.

    Article  CAS  PubMed  Google Scholar 

  • Carpanini, S.M., McKie, L., Thomson, D., Wright, A.K., Gordon, S.L., Roche, S.L., Handley, M.T., Morrison, H., Brownstein, D., Wishart, T.M., et al. (2014). A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis Model Mech 7, 711–722.

    PubMed  PubMed Central  Google Scholar 

  • Catalano, K.J., Stefanovski, D., and Bergman, R.N. (2010). Critical role of the mesenteric depot versus other intra-abdominal adipose depots in the development of insulin resistance in young rats. Diabetes 59, 1416–1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chau, Y.Y., Bandiera, R., Serrels, A., Martínez-Estrada, O.M., Qing, W., Lee, M., Slight, J., Thornburn, A., Berry, R., McHaffie, S., et al. (2014). Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16, 367–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Yechoor, V.K., Chang, B.H.J., Li, M.V., March, K.L., and Chan, L. (2009). The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. Endocrinology 150, 4552–4561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitraju, C., Mejhert, N., Haas, J.T., Diaz-Ramirez, L.G., Grueter, C.A., Imbriglio, J.E., Pinto, S., Koliwad, S.K., Walther, T.C., and FareseJr., R.V. (2017). Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab 26, 407–418.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, X., Wang, Y., Tang, Y., Liu, Y., Zhao, L., Deng, J., Xu, G., Peng, X., Ju, S., Liu, G., et al. (2011). Seipin ablation in mice results in severe generalized lipodystrophy. Hum Mol Genet 20, 3022–3030.

    Article  CAS  PubMed  Google Scholar 

  • Dejgaard, S.Y., and Presley, J.F. (2019). Rab18: new insights into the function of an essential protein. Cell Mol Life Sci 76, 1935–1945.

    Article  CAS  PubMed  Google Scholar 

  • Fang, H., and Judd, R.L. (2018). Adiponectin regulation and function. Compr Physiol 8, 1031–1063.

    Article  PubMed  Google Scholar 

  • Fei, W., Shui, G., Zhang, Y., Krahmer, N., Ferguson, C., Kapterian, T.S., Lin, R.C., Dawes, I.W., Brown, A.J., Li, P., et al. (2011). A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7, e1002201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerondopoulos, A., Bastos, R.N., Yoshimura, S., Anderson, R., Carpanini, S., Aligianis, I., Handley, M.T., and Barr, F.A. (2014). Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 205, 707–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson, B., Hedjazifar, S., Gogg, S., Hammarstedt, A., and Smith, U. (2015). Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 26, 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Hadigan, C., Meigs, J.B., Corcoran, C., Rietschel, P., Piecuch, S., Basgoz, N., Davis, B., Sax, P., Stanley, T., Wilson, P.W.F., et al. (2001). Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin Infect Dis 32, 130–139.

    Article  CAS  PubMed  Google Scholar 

  • Han, D., Lerner, A.G., Vande Walle, L., Upton, J.P., Xu, W., Hagen, A., Backes, B.J., Oakes, S.A., and Papa, F.R. (2009). IRE1a kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handley, M.T., and Aligianis, I.A. (2012). RAB3GAP1, RAB3GAP2 and RAB18: disease genes in Micro and Martsolf syndromes. Biochem Soc Trans 40, 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  • Handley, M.T., Carpanini, S.M., Mali, G.R., Sidjanin, D.J., Aligianis, I.A., Jackson, I.J., and FitzPatrick, D.R. (2015). Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol 5, 150047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hariri, H., Speer, N., Bowerman, J., Rogers, S., Fu, G., Reetz, E., Datta, S., Feathers, J. R., Ugrankar, R., Nicastro, D., et al. (2019). Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J Cell Biol 218, 1319–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollien, J., and Weissman, J.S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107.

    Article  CAS  PubMed  Google Scholar 

  • Hou, B., Zhao, Y., He, P., Xu, C., Ma, P., Lam, S.M., Li, B., Gil, V., Shui, G., Qiang, G., et al. (2020). Targeted lipidomics and transcriptomics profiling reveal the heterogeneity of visceral and subcutaneous white adipose tissue. Life Sci 245, 117352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenroth, M., and Bohnert, M. (2020). Come a little bit closer! Lipid droplet-ER contact sites are getting crowded. Biochim Biophys Acta 1867, 118603.

    Article  CAS  Google Scholar 

  • Hussain, I., and Garg, A. (2016). Lipodystrophy syndromes. Endocrinol Metab Clin N Am 45, 783–797.

    Article  Google Scholar 

  • Jayson, C.B.K., Arlt, H., Fischer, A.W., Lai, Z.W., Farese, R.V.Jr., and Walther, T.C. (2018). Rab18 is not necessary for lipid droplet biogenesis or turnover in human mammary carcinoma cells. Mol Biol Cell 29, 2045–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadowaki, T., and Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocrine Rev 26, 439–451.

    Article  CAS  Google Scholar 

  • Khalatbari, A., Mishra, P., Han, H., He, Y., MacVeigh-Aloni, M., and Ji, C. (2020). Ritonavir and lopinavir suppress RCE1 and CAAX Rab proteins sensitizing the liver to organelle stress and injury. Hepatol Commun 4, 932–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, N., Leonzino, M., Hancock-Cerutti, W., Horenkamp, F.A., Li, P.Q., Lees, J.A., Wheeler, H., Reinisch, K.M., and De Camilli, P. (2018). VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217, 3625–3639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusminski, C.M., Holland, W.L., Sun, K., Park, J., Spurgin, S.B., Lin, Y., Askew, G.R., Simcox, J.A., McClain, D.A., Li, C., et al. (2012). MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med 18, 1539–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafontan, M., and Berlan, M. (2003). Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 24, 276–283.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.J., Wu, Y., and Fried, S.K. (2013). Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 34, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Luo, X., Zhao, S., Siu, G.K., Liang, Y., Chan, H.C., Satoh, A., and Yu, S.S. (2017). COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36, 441–457.

    Article  CAS  PubMed  Google Scholar 

  • Liegel, R.P., Handley, M.T., Ronchetti, A., Brown, S., Langemeyer, L., Linford, A., Chang, B., Morris-Rosendahl, D.J., Carpanini, S., Posmyk, R., et al. (2013). Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet 93, 1001–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., and Liu, F. (2014). Regulation of adiponectin multimerization, signaling and function. Best Pract Res Clin Endocrinol Metab 28, 25–31.

    Article  PubMed  Google Scholar 

  • Lütcke, A., Parton, R.G., Murphy, C., Olkkonen, V.M., Dupree, P., Valencia, A., Simons, K., and Zerial, M. (1994). Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci 107, 3437–3448.

    Article  PubMed  Google Scholar 

  • Macotela, Y., Emanuelli, B., Mori, M.A., Gesta, S., Schulz, T.J., Tseng, Y.H., and Kahn, C.R. (2012). Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61, 1691–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magré, J., Delépine, M., Khallouf, E., Gedde-DahlJr, T., Van Maldergem, L., Sobel, E., Papp, J., Meier, M., Mégarbané, A., BSCL Working Group, A., et al. (2001). Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28, 365–370.

    Article  PubMed  Google Scholar 

  • Martin, S., Driessen, K., Nixon, S.J., Zerial, M., and Parton, R.G. (2005). Regulated Localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280, 42325–42335.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, D.A., Kim, J.H., Nguyen, L.N., Cheng, W., Tan, B.C., Goh, V.J., Tan, J.S.Y., Yaligar, J., Kn, B.P., Velan, S.S., et al. (2014). Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J Biol Chem 289, 9560–9572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morigny, P., Boucher, J., Arner, P., and Langin, D. (2021). Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 17, 276–295.

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki, Y., Maeda, T., Maeda, M., Tauchi-Sato, K., and Fujimoto, T. (2006). Recruitment of TIP47 to lipid droplets is controlled by the putative hydrophobic cleft. Biochem Biophys Res Commun 347, 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Ota, T., Gayet, C., and Ginsberg, H.N. (2008). Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118, 316–332.

    Article  CAS  PubMed  Google Scholar 

  • Ozeki, S., Cheng, J., Tauchi-Sato, K., Hatano, N., Taniguchi, H., and Fujimoto, T. (2005). Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118, 2601–2611.

    Article  CAS  PubMed  Google Scholar 

  • Payne, V.A., Grimsey, N., Tuthill, A., Virtue, S., Gray, S.L., Dalla Nora, E., Semple, R. K., O’Rahilly, S., and Rochford, J.J. (2008). The human lipodystrophy gene BSCL2/Seipin may be essential for normal adipocyte differentiation. Diabetes 57, 2055–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido, M.R., Diaz-Ruiz, A., Jimenez-Gomez, Y., Garcia-Navarro, S., Gracia-Navarro, F., Tinahones, F., Lopez-Miranda, J., Fruhbeck, G., Vazquez-Martinez, R., Malagon, M.M., et al. (2011). Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6, e22931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido, M.R., Rabanal-Ruiz, Y., Almabouada, F., Díaz-Ruiz, A., Burrell, M.A., Vázquez, M.J., Castaño, J.P., Kineman, R.D., Luque, R.M., Diéguez, C., et al. (2013). Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. J Mol Endocrinol 50, 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Qian, H., Chen, Y., Nian, Z., Su, L., Yu, H., Chen, F.J., Zhang, X., Xu, W., Zhou, L., Liu, J., et al. (2017). HDAC6-mediated acetylation of lipid droplet-binding protein CIDEC regulates fat-induced lipid storage. J Clin Invest 127, 1353–1369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen, E.D., and Spiegelman, B.M. (2014). What we talk about When we talk about fat. Cell 156, 20–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytka, J.M., Wueest, S., Schoenle, E.J., and Konrad, D. (2011). The portal theory supported by venous drainage-selective fat transplantation. Diabetes 60, 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Salloum, S., Wang, H., Ferguson, C., Parton, R.G., and Tai, A.W. (2013). Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9, e1003513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, W., Wang, Z.M., Punyanita, M., Lei, J., Sinav, A., Kral, J.G., Imielinska, C., Ross, R., and Heymsfield, S.B. (2003). Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11, 5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasa, S., and Grinspoon, S.K. (2014). Metabolic and body composition effects of newer antiretrovirals in HIV-infected patients. Eur J Endocrinol 170, R185–R202.

    Article  CAS  PubMed  Google Scholar 

  • Stern, J.H., Rutkowski, J.M., and Scherer, P.E. (2016). Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23, 770–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, G., Ma, C., Li, L., Zhang, S., Li, F., Wu, J., Yin, Y., Zhu, Q., Liang, Y., Wang, R., et al. (2022). PITPNC1 promotes the thermogenesis of brown adipose tissue under acute cold exposure. Sci China Life Sci 65, 2287–2300.

    Article  CAS  PubMed  Google Scholar 

  • Vishvanath, L., and Gupta, R.K. (2019). Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest 129, 4022–4031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Becuwe, M., Housden, B.E., Chitraju, C., Porras, A.J., Graham, M.M., Liu, X. N., Thiam, A.R., Savage, D.B., Agarwal, A.K., et al. (2016). Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z.V., and Scherer, P.E. (2016). Adiponectin, the past two decades. J Mol Cell Biol 8, 93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D., Li, Y., Wu, L., Li, Y., Zhao, D., Yu, J., Huang, T., Ferguson, C., Parton, R.G., Yang, H., et al. (2018). Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 217, 975–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Spinas, G.A., and Niessen, M. (2010). ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm Metab Res 42, 643–651.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., Leaf, D.S., and Moore, H.P.H. (1993). Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene 132, 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Ho, Q.W.C., Chua, M., Stelmashenko, O., Yeo, X.Y., Muralidharan, S., Torta, F., Chew, E.G.Y., Lian, M.M., Foo, J.N., et al. (2022). Destabilization of β Cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes. Proc Natl Acad Sci USA 119, e2113074119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Yu, M., Arshad, M., Wang, W., Lu, Y., Gong, J., Gu, Y., Li, P., and Xu, L. (2018). Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARα pathway in adipocytes. Diabetes 67, 1935–1948.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2018YFA0506901, 2019YFA0801701, 2022YFA0806502), the National Natural Science Foundation of China (92254308, 92157107), and the Lingang Laboratory (LG-QS-202204-06). We would like to thank the members of the P.L. laboratory at Tsinghua University for productive discussion; Dr. Yuangang Zhu at Peking University for guiding EM analysis and Dr. Tongjin Zhao for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or Li Xu.

Ethics declarations

The authors declare no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable institutional and/or national guidelines for the care and use of animals were followed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, L., Xu, D. et al. Rab18 maintains homeostasis of subcutaneous adipose tissue to prevent obesity-induced metabolic disorders. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2367-9

Navigation