Skip to main content
Log in

Role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity in a piglet model

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Iron is an essential trace element for both the host and resident microbes in the gut. In this study, iron was administered orally and parenterally to anemic piglets to investigate the role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity. We found that oral iron administration easily increased the abundance of Proteobacteria and Escherichia-Shigella, and decreased the abundance of Lactobacillus in the ileum. Furthermore, similar bacterial changes, namely an increase in Proteobacteria, Escherichia-Shigella, and Fusobacterium and a reduction in the Christensenellaceae_R-7_group, were observed in the colon of both iron-supplemented groups. Spearman’s correlation analysis indicated that the changed Fusobacterium, Fusobacteria and Proteobacteria in the colon were positively correlated with hemoglobin, colon and spleen iron levels. Nevertheless, it was found that activated mTOR1 signaling, improved villous height and crypt depth in the ileum, enhanced immune communication, and increased protein expression of IL-22 and IL-10 in the colon of both iron-supplemented groups. In conclusion, the benefits of improved host iron outweigh the risks of altered gut microbiota for intestinal mucosal growth and immune regulation in treating iron deficiency anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hassi, H.O., Ng, O., Evstatiev, R., Mangalika, M., Worton, N., Jambrich, M., Khare, V., Phipps, O., Keeler, B., Gasche, C., et al. (2021). Intravenous iron is non-inferior to oral iron regarding cell growth and iron metabolism in colorectal cancer associated with iron-deficiency anaemia. Sci Rep 11, 13699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowlus, C.L. (2003). The role of iron in T cell development and autoimmunity. Autoimmun Rev 2, 73–78.

    Article  CAS  PubMed  Google Scholar 

  • Buhnik-Rosenblau, K., Moshe-Belizowski, S., Danin-Poleg, Y., and Meyron-Holtz, E.G. (2012). Genetic modification of iron metabolism in mice affects the gut microbiota. Biometals 25, 883–892.

    Article  CAS  PubMed  Google Scholar 

  • Burrin, D., Sangild, P.T., Stoll, B., Thymann, T., Buddington, R., Marini, J., Olutoye, O., and Shulman, R.J. (2020). Translational advances in pediatric nutrition and gastroenterology: new insights from pig models. Annu Rev Anim Biosci 8, 321–354.

    Article  PubMed  Google Scholar 

  • Camaschella, C. (2015). Iron-deficiency anemia. N Engl J Med 372, 1832–1843.

    Article  PubMed  Google Scholar 

  • Cassat, J.E., and Skaar, E.P. (2013). Iron in infection and immunity. Cell Host Microbe 13, 509–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Wayhs, M.L., de Morais, M.B., Machado, U.F., Nassar, S.M., Neto, U.F., and Silvério Amâncio, O.M. (2011). Transepithelial transport of glucose and mRNA of glucose transporters in the small intestine of rats with iron-deficiency anemia. Nutrition 27, 111–115.

    Article  PubMed  Google Scholar 

  • Coe, G.L., Pinkham, N.V., Celis, A.I., Johnson, C., DuBois, J.L., and Walk, S.T. (2021). Dynamic gut microbiome changes in response to low-iron challenge. Appl Environ Microbiol 87, e02307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Z., Li, L., Zhang, Y., Guo, L., Wu, X., Yin, Y., and Wan, D. (2021). Effects of circadian iron administration on iron bioavailability and biological rhythm in pigs. J Sci Food Agric 101, 2712–2717.

    Article  CAS  PubMed  Google Scholar 

  • Dostal, A., Fehlbaum, S., Chassard, C., Zimmermann, M.B., and Lacroix, C. (2013). Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol 83, 161–175.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Ellermann, M., Gharaibeh, R.Z., Maharshak, N., Peréz-Chanona, E., Jobin, C., Carroll, I.M., Arthur, J.C., Plevy, S.E., Fodor, A.A., Brouwer, C.R., et al. (2020). Dietary iron variably modulates assembly of the intestinal microbiota in colitis-resistant and colitis-susceptible mice. Gut Microbes 11, 32–50.

    Article  CAS  PubMed  Google Scholar 

  • Fan, L., Xia, Y., Wang, Y., Han, D., Liu, Y., Li, J., Fu, J., Wang, L., Gan, Z., Liu, B., et al. (2023). Gut microbiota bridges dietary nutrients and host immunity. Sci China Life Sci doi: https://doi.org/10.1007/s11427-023-2346-1.

  • Fretham, S.J.B., Carlson, E.S., and Georgieff, M.K. (2013). Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models. J Nutr 143, 260–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Yang, Z., Zhao, C., Tang, X., Jiang, Q., and Yin, Y. (2023). A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. Sci China Life Sci 66, 1518–1534.

    Article  PubMed  Google Scholar 

  • Guo, X., Qiu, J., Tu, T., Yang, X., Deng, L., Anders, R.A., Zhou, L., and Fu, Y.X. (2014). Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity 40, 25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haschka, D., Hoffmann, A., and Weiss, G. (2021). Iron in immune cell function and host defense. Semin Cell Dev Biol 115, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Howaldt, S., Domènech, E., Martinez, N., Schmidt, C., and Bokemeyer, B. (2022). Long-term effectiveness of oral ferric maltol vs intravenous ferric carboxymaltose for the treatment of iron-deficiency anemia in patients with inflammatory bowel disease: a randomized controlled noninferiority trial. Inflamm Bowel Dis 28, 373–384.

    Article  PubMed  Google Scholar 

  • Huang, W., Ma, T., Liu, Y., Kwok, L.Y., Li, Y., Jin, H., Zhao, F., Shen, X., Shi, X., Sun, Z., et al. (2023). Spraying compound probiotics improves growth performance and immunity and modulates gut microbiota and blood metabolites of suckling piglets. Sci China Life Sci 66, 1092–1107.

    Article  CAS  PubMed  Google Scholar 

  • Jaeggi, T., Kortman, G.A.M., Moretti, D., Chassard, C., Holding, P., Dostal, A., Boekhorst, J., Timmerman, H.M., Swinkels, D.W., Tjalsma, H., et al. (2015). Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64, 731–742.

    Article  CAS  PubMed  Google Scholar 

  • Jason, J., Archibald, L.K., Nwanyanwu, O.C., Bell, M., Jensen, R.J., Gunter, E., Buchanan, I., Larned, J., Kazembe, P.N., Dobbie, H., et al. (2001). The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol 126, 466–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Li, C., Wu, Q., An, P., Huang, L., Wang, J., Chen, C., Chen, X., Zhang, F., Ma, L., et al. (2019). Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun 10, 2935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonker, F.A.M., and Boele van Hensbroek, M. (2014). Anaemia, iron deficiency and susceptibility to infections. J Infect 69, S23–S27.

    Article  PubMed  Google Scholar 

  • Knight, Z.A., Schmidt, S.F., Birsoy, K., Tan, K., and Friedman, J.M. (2014). A critical role for mTORC1 in erythropoiesis and anemia. eLife 3, e01913.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer, J.L., Baltathakis, I., Alcantara, O.S.F., and Boldt, D.H. (2002). Differentiation of functional dendritic cells and macrophages from human peripheral blood monocyte precursors is dependent on expression of p21 (WAF1/CIP1) and requires iron. Br J Haematol 117, 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Kuvibidila, S., and Warrier, R.P. (2004). Differential effects of iron deficiency and underfeeding on serum levels of interleukin-10, interleukin-12p40, and interferon-gamma in mice. Cytokine 26, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • La Carpia, F., Wojczyk, B.S., Annavajhala, M.K., Rebbaa, A., Culp-Hill, R., D’Alessandro, A., Freedberg, D.E., Uhlemann, A.C., and Hod, E.A. (2019). Transfusional iron overload and intravenous iron infusions modify the mouse gut microbiota similarly to dietary iron. NPJ Biofilms Microbiomes 5, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, T., Clavel, T., Smirnov, K., Schmidt, A., Lagkouvardos, I., Walker, A., Lucio, M., Michalke, B., Schmitt-Kopplin, P., Fedorak, R., et al. (2017). Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 66, 863–871.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Xia, Y., Yuan, S., Li, F., Xie, X., Luo, Y., Yang, X.P., and He, R. (2021). Iron deprivation restrains the differentiation and pathogenicity of T helper 17 cell. J Leukoc Biol 110, 1057–1067.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Hansen, S.L., Borst, L.B., Spears, J.W., and Moeser, A.J. (2016). Dietary iron deficiency and oversupplementation increase intestinal permeability, ion transport, and inflammation in pigs. J Nutr 146, 1499–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, L., Xiong, Q., Kong, J., Tian, C., Miao, L., Zhang, X., and Du, H. (2021). Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function. Biomed Pharmacother 144, 112253.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Pan, X., Liu, Z., Han, M., Xu, G., Dai, X., Wang, W., Zhang, H., and Xie, L. (2020a). Fecal microbiota as a noninvasive biomarker to predict the tissue iron accumulation in intestine epithelial cells and liver. FASEB J 34, 3006–3020.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Dong, Z., Tang, W., Zhou, J., Guo, L., Gong, C., Liu, G., Wan, D., and Yin, Y. (2023). Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. Sci China Life Sci doi: https://doi.org/10.1007/s11427-022-2298-1.

  • Mazgaj, R., Lipinski, P., Szudzik, M., Jończy, A., Kopeć, Z., Stankiewicz, A.M., Kamyczek, M., Swinkels, D., Żelazowska, B., and Starzyński, R. R. (2021). Comparative evaluation of sucrosomial iron and iron oxide nanoparticles as oral supplements in iron deficiency anemia in piglets. Int J Mol Sci 22, 9930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhya, I., Hansen, R., El-Omar, E.M., and Hold, G.L. (2012). IBD —what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 9, 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Murdoch, C.C., and Skaar, E.P. (2022). Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 20, 657–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paganini, D., Uyoga, M.A., Kortman, G.A.M., Cercamondi, C.I., Winkler, H.C., Boekhorst, J., Moretti, D., Lacroix, C., Karanja, S., and Zimmermann, M.B. (2019). Iron-containing micronutrient powders modify the effect of oral antibiotics on the infant gut microbiome and increase post-antibiotic diarrhoea risk: a controlled study in Kenya. Gut 68, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Paganini, D., Uyoga, M., and Zimmermann, M. (2016). Iron fortification of foods for infants and children in low-income countries: effects on the gut microbiome, gut inflammation, and diarrhea. Nutrients 8, 494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paganini, D., and Zimmermann, M.B. (2017). The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. Am J Clin Nutr 106, 1688S–1693S.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pu, Y., Li, S., Xiong, H., Zhang, X., Wang, Y., and Du, H. (2018). Iron promotes intestinal development in neonatal piglets. Nutrients 10, 726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, W., Yu, B., Yu, J., Zheng, P., Huang, Z., Luo, J., Mao, X., He, J., Yan, H., Wu, J., et al. (2022). Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. Sci China Life Sci 65, 2062–2075.

    Article  CAS  PubMed  Google Scholar 

  • Saletta, F., Rahmanto, Y.S., Siafakas, A.R., and Richardson, D.R. (2011). Cellular iron depletion and the mechanisms involved in the iron-dependent regulation of the growth arrest and DNA damage family of genes. J Biol Chem 286, 35396–35406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stokowa-Soltys, K., Wojtkowiak, K., and Jagiełło, K. (2021). Fusobacterium nucleatum—Friend or foe? J Inorg Biochem 224, 111586.

    Article  CAS  PubMed  Google Scholar 

  • Vardhan, H., Gupta, R., Jha, R., Bhengraj, A.R., and Mittal, A. (2011). Ferritin heavy chain-mediated iron homoeostasis regulates expression of IL-10 in Chlamydia trachomatis-infected HeLa cells. Cell Biol Int 35, 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Watson, A., Lipina, C., McArdle, H.J., Taylor, P.M., and Hundal, H.S. (2016). Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1. Cell Signal 28, 412–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, H., Wei, W., Hu, L., Zhang, Y., Zhang, H., and Liu, J. (2021). Reduced feeding frequency improves feed efficiency associated with altered fecal microbiota and bile acid composition in pigs. Front Microbiol 12.

  • Yarosz, E.L., Ye, C., Kumar, A., Black, C., Choi, E.K., Seo, Y.A., and Chang, C.H. (2020). Cutting edge: activation-induced iron flux controls CD4 T cell proliferation by promoting proper IL-2R signaling and mitochondrial function. J Immunol 204, 1708–1713.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Macias-Garcia, A., Velazquez, J., Paltrinieri, E., Kaufman, R.J., and Chen, J.J. (2018). HRI coordinates translation by eIF2aP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency. Blood 131, 450–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province (2020JJ5635), Youth Innovation Promotion Association of Chinese Academy of Sciences (2022370), the National Center of Technology Innovation for pigs, the Science and Technology Program of Hunan Province (2020NK2013, 2020GK4095), Outstanding Youth Fund of Hunan Natural Science Foundation (2021JJ20045), the Key R&D Program of Guangxi Province (2021AB20063), the National Natural Science Foundation of China (32130099) and the China Agriculture Research System of MOF and MARA (CARS-35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Wan or Yulong Yin.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Liu, S., Deng, Q. et al. Role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity in a piglet model. Sci. China Life Sci. 66, 2086–2098 (2023). https://doi.org/10.1007/s11427-022-2409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2409-0

Navigation