Skip to main content
Log in

Identification and characterization of human hematopoietic mesoderm

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The embryonic mesoderm comprises heterogeneous cell subpopulations with distinct lineage biases. It is unclear whether a bias for the human hematopoietic lineage emerges at this early developmental stage. In this study, we integrated single-cell transcriptomic analyses of human mesoderm cells from embryonic stem cells and embryos, enabling us to identify and define the molecular features of human hematopoietic mesoderm (HM) cells biased towards hematopoietic lineages. We discovered that BMP4 plays an essential role in HM specification and can serve as a marker for HM cells. Mechanistically, BMP4 acts as a downstream target of HDAC1, which modulates the expression of BMP4 by deacetylating its enhancer. Inhibition of HDAC significantly enhances HM specification and promotes subsequent hematopoietic cell differentiation. In conclusion, our study identifies human HM cells and describes new mechanisms for human hematopoietic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Angelos, M.G., Abrahante, J.E., Blum, R.H., and Kaufman, D.S. (2018). Single cell resolution of human hematoendothelial cells defines transcriptional signatures of hemogenic endothelium. Stem Cells 36, 206–217.

    Article  CAS  PubMed  Google Scholar 

  • Antfolk, D., Sjöqvist, M., Cheng, F., Isoniemi, K., Duran, C.L., Rivero-Muller, A., Antila, C., Niemi, R., Landor, S., Bouten, C.V.C., et al. (2017). Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci USA 114, E4574–E4581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins, M.H., Scarfò, R., McGrath, K.E., Yang, D., Palis, J., Ditadi, A., and Keller, G.M. (2022). Modeling human yolk sac hematopoiesis with pluripotent stem cells. J Exp Med 219, e20211924.

    Article  CAS  PubMed  Google Scholar 

  • Boraas, L.C., and Ahsan, T. (2016). Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Sci Rep 6, 30814.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian, Z., Gong, Y., Huang, T., Lee, C.Z.W., Bian, L., Bai, Z., Shi, H., Zeng, Y., Liu, C., He, J., et al. (2020). Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bruveris, F.F., Ng, E.S., Stanley, E.G., and Elefanty, A.G. (2021). VEGF, FGF2, and BMP4 regulate transitions of mesoderm to endothelium and blood cells in a human model of yolk sac hematopoiesis. Exp Hematol 103, 30–39.e2.

    Article  CAS  PubMed  Google Scholar 

  • Burns, C.E., Galloway, J.L., Smith, A.C.H., Keefe, M.D., Cashman, T.J., Paik, E.J., Mayhall, E.A., Amsterdam, A.H., and Zon, L.I. (2009). A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood 113, 5776–5782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915.

    Article  CAS  PubMed  Google Scholar 

  • Chan, S.S.K., Shi, X., Toyama, A., Arpke, R.W., Dandapat, A., Iacovino, M., Kang, J., Le, G., Hagen, H.R., Garry, D.J., et al. (2013). Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12, 587–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coultas, L., Chawengsaksophak, K., and Rossant, J. (2005). Endothelial cells and VEGF in vascular development. Nature 438, 937–945.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dale, L., and Slack, J.M.W. (1987a). Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551.

    Article  CAS  PubMed  Google Scholar 

  • Dale, L., and Slack, J.M.W. (1987b). Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100, 279–295.

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter, A.J.M., Gennip, A.H., Caron, H.N., Kemp, S., and Kuilenburg, A.B.P. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370, 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detrich, H.W. III, Kieran, M.W., Chan, F.Y., Barone, L.M., Yee, K., Rundstadler, J.A., Pratt, S., Ransom, D., and Zon, L.I. (1995). Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA 92, 10713–10717.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditadi, A., Sturgeon, C.M., and Keller, G. (2017). A view of human haematopoietic development from the Petri dish. Nat Rev Mol Cell Biol 18, 56–67.

    Article  CAS  PubMed  Google Scholar 

  • Dou, D.R., Calvanese, V., Sierra, M.I., Nguyen, A.T., Minasian, A., Saarikoski, P., Sasidharan, R., Ramirez, C.M., Zack, J.A., Crooks, G.M., et al. (2016). Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol 18, 595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzierzak, E., and Bigas, A. (2018). Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639–651.

    Article  CAS  PubMed  Google Scholar 

  • Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., and Schier, A.F. (2018). Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fidanza, A., Stumpf, P.S., Ramachandran, P., Tamagno, S., Babtie, A., Lope-Yrigoyen, M., Taylor, A.H., Easterbrook, J., Henderson, B.E.P., Axton, R., et al. (2020). Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood 136, 2893–2904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan, B.L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10, 1580–1594.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, D.S. (2009). Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 114, 3513–3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemen, E., Calvo, W., and Fliedner, T.M. (1979). Atlas of human hemopoietic development. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Kennedy, M., D’Souza, S.L., Lynch-Kattman, M., Schwantz, S., and Keller, G. (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109, 2679–2687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M.Y., Lim, H.W., Lee, S.H., and Han, H.J. (2009). Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal. Stem Cells 27, 1858–1868.

    Article  CAS  PubMed  Google Scholar 

  • Lengerke, C., Schmitt, S., Bowman, T.V., Jang, I.H., Maouche-Chretien, L., McKinney-Freeman, S., Davidson, A.J., Hammerschmidt, M., Rentzsch, F., Green, J.B.A., et al. (2008). BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2, 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Lescroart, F., Wang, X., Lin, X., Swedlund, B., Gargouri, S., Sanchez-Danes, A., Moignard, V., Dubois, C., Paulissen, C., Kinston, S., et al. (2018). Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 359, 1177–1181.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh, K.M., Chen, A., Koh, P.W., Deng, T.Z., Sinha, R., Tsai, J.M., Barkal, A.A., Shen, K.Y., Jain, R., Morganti, R.M., et al. (2016). Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y.Q., Gong, Y., Hou, S., Huang, T., Wang, H., Liu, D., Ni, Y., Wang, C., Wang, J., Hou, J., et al. (2021). Spatiotemporal and functional heterogeneity of hematopoietic stem cell-competent hemogenic endothelial cells in mouse embryos. Front Cell Dev Biol 9, 699263.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8, 329–337.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa, Y., and Cserjesi, P. (2004). Extra-embryonic vasculature development is regulated by the transcription factor HAND1. Development 131, 2195–2204.

    Article  CAS  PubMed  Google Scholar 

  • Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C., Jokubaitis, V.J., Yu, Q.C., Maksimovic, J., et al. (2016). Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aortagonad-mesonephros. Nat Biotechnol 34, 1168.1179.

    Article  CAS  PubMed  Google Scholar 

  • Nostro, M.C., Sarangi, F., Ogawa, S., Holtzinger, A., Corneo, B., Li, X., Micallef, S.J., Park, I.H., Basford, C., Wheeler, M.B., et al. (2012). Pancreatic differentiation. In: StemBook. Cambridge: Harvard Stem Cell Institute.

    Google Scholar 

  • Palpant, N.J., Wang, Y., Hadland, B., Zaunbrecher, R.J., Redd, M., Jones, D., Pabon, L., Jain, R., Epstein, J., Ruzzo, W.L., et al. (2017). Chromatin and transcriptional analysis of mesoderm progenitor cells identifies HOPX as a regulator of primitive hematopoiesis. Cell Rep 20, 1597–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijuan-Sala, B., Griffiths, J.A., Guibentif, C., Hiscock, T.W., Jawaid, W., Calero-Nieto, F.J., Mulas, C., Ibarra-Soria, X., Tyser, R.C.V., Ho, D.L.L., et al. (2019). A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Prummel, K.D., Nieuwenhuize, S., and Mosimann, C. (2020). The lateral plate mesoderm. Development 147, dev175059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slukvin, I.I. (2013). Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood 122, 4035–4046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgeon, C.M., Ditadi, A., Awong, G., Kennedy, M., and Keller, G. (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol 32, 554–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thambyrajah, R., Fadlullah, M.Z.H., Proffitt, M., Patel, R., Cowley, S.M., Kouskoff, V., and Lacaud, G. (2018). HDAC1 and HDAC2 modulate TGF-β signaling during endothelial-to-hematopoietic transition. Stem Cell Rep 10, 1369–1383.

    Article  CAS  Google Scholar 

  • Tyser, R.C.V., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., and Srinivas, S. (2021). Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Gong, Y., Wei, A., Huang, T., Hou, S., Du, J., Li, Z., Wang, J., Liu, B., and Lan, Y. (2021a). Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells. Sci China Life Sci 64, 2073–2087.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., He, J., Xu, C., Chen, X., Yang, H., Shi, S., Liu, C., Zeng, Y., Wu, D., Bai, Z., et al. (2021b). Decoding human megakaryocyte development. Cell Stem Cell 28, 535–549.e8.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Liu, C., Liu, X., Wang, M., Wu, D., Gao, J., Su, P., Nakahata, T., Zhou, W., Xu, Y., et al. (2018). MEIS1 regulates hemogenic endothelial generation, megakaryopoiesis, and thrombopoiesis in human pluripotent stem cells by targeting TAL1 and FLI1. Stem Cell Rep 10, 447–460.

    Article  CAS  Google Scholar 

  • Wang, H., Wang, M., Wen, Y., Xu, C., Chen, X., Wu, D., Su, P., Zhou, W., Cheng, T., Shi, L., et al. (2020). Biphasic regulation of mesenchymal genes controls fate switches during hematopoietic differentiation of human pluripotent stem cells. Adv Sci 7, 2001019.

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, P., Wei, Y., Gao, Y., Patient, R., and Liu, F. (2011). A blood flowdependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood 118, 4102–4110.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Tian, Y., Morley, M.P., Lu, M.M., DeMayo, F.J., Olson, E.N., and Morrisey, E. E. (2013). Development and regeneration of Sox2+ endoderm progenitors are regulated by a HDAC1/2-Bmp4/Rb1 regulatory pathway. Dev Cell 24, 345–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winnier, G., Blessing, M., Labosky, P.A., and Hogan, B.L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9, 2105–2116.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., He, J., Wang, H., Zhang, Y., Wu, J., Zhao, L., Li, Y., Gao, J., Geng, G., Wang, B., et al. (2022). Single-cell transcriptomic analysis identifies an immune-prone population in erythroid precursors during human ontogenesis. Nat Immunol 23, 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto, M., Montecino-Rodriguez, E., Ferkowicz, M.J., Porayette, P., Shelley, W.C., Conway, S.J., Dorshkind, K., and Yoder, M.C. (2011). Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci USA 108, 1468–1473.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto, M., Porayette, P., Glosson, N.L., Conway, S.J., Carlesso, N., Cardoso, A.A., Kaplan, M.H., and Yoder, M.C. (2012). Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119, 5706–5714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Y., He, J., Bai, Z., Li, Z., Gong, Y., Liu, C., Ni, Y., Du, J., Ma, C., Bian, L., et al. (2019). Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29, 881–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Lv, J., He, Q., Wang, S., Gao, Y., Meng, A., Yang, X., and Liu, F. (2014). Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nat Commun 5, 3431.

    Article  ADS  PubMed  Google Scholar 

  • Zhang, J.P., Yang, Z.X., Zhang, F., Fu, Y.W., Dai, X.Y., Wen, W., Zhang, B., Choi, H., Chen, W., Brown, M., et al. (2021). HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs. Sci China Life Sci 64, 1449–1462.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Zhu, Q., Xie, Z., Chen, Y., Qiao, Y., Li, L., and Jing, N. (2013). The zinc finger transcription factor Ovol2 acts downstream of the bone morphogenetic protein pathway to regulate the cell fate decision between neuroectoderm and mesendoderm. J Biol Chem 288, 6166–6177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, W., Zhang, B., Li, M., Mo, F., Mi, T., Wu, Y., Teng, Z., Zhou, Q., Li, W., and Hu, B. (2019). Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome. Nat Commun 10, 928.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-073, 2021-I2M-1-040, 2022-I2M-JB-015), the National Key Research and Development Program of China (2021YFA1100703, 2021YFA1103000), Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00031), the National Natural Science Foundation of China (82125003, 32271161, 82200141) and Tianjin Municipal Science and Technology Commission Grant (20JCYBJC00240, 22ZXSYSY00010, 22JCQNJC01270). We thank Dr. Shankar Srinivas and Baoyang Hu for providing the single-cell profiling data from human embryos or materials for this study. We thank Dr. Daniel Ackerman (Insight Editing London) for editing the manuscript during preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Wang or Jiaxi Zhou.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Additional information

Supporting Information

The supporting information is available online at https://doi.org/10.1007/s11427-022-2374-x. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhao, J., Zhang, R. et al. Identification and characterization of human hematopoietic mesoderm. Sci. China Life Sci. 67, 320–331 (2024). https://doi.org/10.1007/s11427-022-2374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2374-x

Navigation