Skip to main content
Log in

Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Iron is an important micronutrient that plays a vital role in host defenses and bacterial pathogenicity. As iron treatments increase the risk of infection by stimulating the growth and virulence of bacterial pathogens, their roles in anti-infection immunity have frequently been underestimated. To estimate whether adequate dietary iron intake would help defend against pathogenic bacterial infection, mice were fed iron-deficient (2 mg kg−1 feed), iron-sufficient (35 mg kg−1 feed), or iron-enriched diet (350 mg kg−1 feed) for 12 weeks, followed by oral infection with Salmonella typhimurium. Our results revealed that dietary iron intake improved mucus layer function and decelerated the invasion of the pathogenic bacteria, Salmonella typhimurium. Positive correlations between serum iron and the number of goblet cells and mucin2 were found in response to total iron intake in mice. Unabsorbed iron in the intestinal tract affected the gut microbiota composition, and the abundance of Bacteroidales, family Muribaculaceae, was positively correlated with their mucin2 expression. However, the results from antibiotic-treated mice showed that the dietary iron-regulated mucin layer function was not microbial-dependent. Furthermore, in vitro studies revealed that ferric citrate directly induced mucin2 expression and promoted the proliferation of goblet cells in both ileal and colonic organoids. Thus, dietary iron intake improves serum iron levels, regulates goblet cell regeneration and mucin layer function, and plays a positive role in the prevention of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire, J.M., Crowley, S.M., Law, H.T., Chang, S.Y., Ko, H.J., and Vallance, B.A. (2018). The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol 39, 677–696.

    Article  CAS  PubMed  Google Scholar 

  • Bowlus, C.L. (2003). The role of iron in T cell development and autoimmunity. Autoimmun Rev 2, 73–78.

    Article  CAS  PubMed  Google Scholar 

  • Carboni, J., Reed, S., Kolba, N., Eshel, A., Koren, O., and Tako, E. (2020). Alterations in the intestinal morphology, gut microbiota, and trace mineral status following intra-amniotic administration (Gallus gallus) of teff (Eragrostis tef) seed extracts. Nutrients 12, 3020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham-Rundles, S., McNeeley, D.F., and Moon, A. (2005). Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115, 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  • Das, N.K., Schwartz, A.J., Barthel, G., Inohara, N., Liu, Q., Sankar, A., Hill, D.R., Ma, X., Lamberg, O., Schnizlein, M.K., et al. (2020). Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab 31, 115–130.e6.

    Article  CAS  PubMed  Google Scholar 

  • Deriu, E., Liu, J.Z., Pezeshki, M., Edwards, R.A., Ochoa, R.J., Contreras, H., Libby, S.J., Fang, F.C., and Raffatellu, M. (2013). Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., Muller, A., et al. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Z., Wan, D., Yang, H., Li, G., Zhang, Y., Zhou, X., Wu, X., and Yin, Y. (2020). Effects of iron deficiency on serum metabolome, hepatic histology, and function in neonatal piglets. Animals 10, 1353.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, Z., Zhang, D., Wu, X., Yin, Y., and Wan, D. (2022). Ferrous bisglycinate supplementation modulates intestinal antioxidant capacity via the AMPK/FOXO pathway and reconstitutes gut microbiota and bile acid profiles in pigs. J Agric Food Chem 70, 4942–4951.

    Article  CAS  PubMed  Google Scholar 

  • Engevik, M.A., Luk, B., Chang-Graham, A.L., Hall, A., Herrmann, B., Ruan, W., Endres, B.T., Shi, Z., Garey, K.W., Hyser, J.M., et al. (2019). Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. mBio. 10.

  • Fang, S., Zhuo, Z., Yu, X., Wang, H., and Feng, J. (2018). Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. J Trace Elem Med Biol 47, 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Forder, R.E.A., Howarth, G.S., Tivey, D.R., and Hughes, R.J. (2007). Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poult Sci 86, 2396–2403.

    Article  CAS  PubMed  Google Scholar 

  • Grondin, J.A., Kwon, Y.H., Far, P.M., Haq, S., and Khan, W.I. (2020). Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Front Immunol 11.

  • Han, X., Lei, X., Yang, X., Shen, J., Zheng, L., Jin, C., Cao, Y., and Yao, J. (2021). A metagenomic insight into the hindgut microbiota and their metabolites for dairy goats fed different rumen degradable starch. Front Microbiol 12, 651631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao, S., Liang, B., Huang, Q., Dong, S., Wu, Z., He, W., and Shi, M. (2018). Metabolic networks in ferroptosis. Oncol Lett 15, 5405–5411.

    PubMed  PubMed Central  Google Scholar 

  • Hoffmann, A., Haschka, D., Valente de Souza, L., Tymoszuk, P., Seifert, M., von Raffay, L., Hilbe, R., Petzer, V., Moser, P.L., Nairz, M., et al. (2021). Baseline iron status and presence of anaemia determine the course of systemic salmonella infection following oral iron supplementation in mice. Ebiomedicine 71, 103568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaweera, J.A.A.S., Reyes, M., and Joseph, A. (2019). RETRACTED ARTICLE: childhood iron deficiency anemia leads to recurrent respiratory tract infections and gastroenteritis. Sci Rep 9, 12637.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kling, P.J. (2020). Iron nutrition, erythrocytes, and erythropoietin in the NICU: erythropoietic and neuroprotective effects. Neoreviews 21, e80–e88.

    Article  PubMed  Google Scholar 

  • Kopeć, Z., Starzyński, R.R., Jończy, A., Mazgaj, R., and Lipiński, P. (2021). Role of iron metabolism-related genes in prenatal development: insights from mouse transgenic models. Genes 12, 1382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kortman, G.A.M., Raffatellu, M., Swinkels, D.W., and Tjalsma, H. (2014). Nutritional iron turned inside out: Intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 38, 1202–1234.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, K.A., Schulz, H.M., Regner, E.H., Severs, E.L., Hendrickson, J.D., Mehta, G., Whitney, A.K., Ir, D., Ohri, N., Robertson, C.E., et al. (2018). Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol 11, 357–368.

    Article  CAS  PubMed  Google Scholar 

  • Kulda, J., Poislová, M., Suchan, P., and Tachezy, J. (1999). Iron enhancement of experimental infection of mice by tritrichomonas foetus. Parasitol Res 85, 692–699.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Leon Coria, A., Cornick, S., Petri, B., Mayengbam, S., Jijon, H. B., Moreau, F., Shearer, J., and Chadee, K. (2020). Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling. Nat Commun 11, 483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrke, M.J., Shapiro, M.J., Rajcula, M.J., Kennedy, M.M., McCue, S.A., Medina, K.L., and Shapiro, V.S. (2021). The mitochondrial iron transporter ABCB7 is required for b cell development, proliferation, and class switch recombination in mice. Elife 10, e69621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J.L., Shi Y.L., and Zhan, L.J. (2021). Establishment of an iron-overloaded mouse model with tuberculosis and analysis of the iron metabolism index (in Chinese). Acta Acad Med Sin 43, 357–365.

    Google Scholar 

  • Li, Y., Hansen, S.L., Borst, L.B., Spears, J.W., and Moeser, A.J. (2016). Dietary iron deficiency and oversupplementation increase intestinal permeability, ion transport, and inflammation in pigs. J Nutr 146, 1499–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Huang, X., Wang, J., Huang, R., and Wan, D. (2020). Regulation of iron homeostasis and related diseases. Mediators Inflamm 2020, 1–11.

    Google Scholar 

  • Liu, J., Hu, D., Chen, Y., Huang, H., Zhang, H., Zhao, J., Gu, Z., and Chen, W. (2018). Strain-specific properties of Lactobacillus plantarum for prevention of Salmonella infection. Food Funct 9, 3673–3682.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Q., Lao, C., Huang, C., Xia, Y., Ma, W., Liu, W., and Chen, Z. (2021). Iron overload resulting from the chronic oral administration of ferric citrate impairs intestinal immune and barrier in mice. Biol Trace Elem Res 199, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Ma, N., Guo, P., Chen, J., Qi, Z., Liu, C., Shen, J., Sun, Y., Chen, X., Chen, G.Q., and Ma, X. (2022). Poly-β-hydroxybutyrate alleviated diarrhea and colitis via lactobacillus johnsonii biofilm-mediated maturation of sulfomucin. Sci China Life Sci doi: https://doi.org/10.1007/s11427-022-2213-6.

  • Ma, S., Dubin, A.E., Zhang, Y., Mousavi, S.A.R., Wang, Y., Coombs, A.M., Loud, M., Andolfo, I., and Patapoutian, A. (2021). A role of piezo1 in iron metabolism in mice and humans. Cell 184, 969–982.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalhal, A., Williams, J.M., Johnson, S., Ellaby, N., Duckworth, C.A., Burkitt, M.D., Liu, X., Hold, G.L., Campbell, B.J., Pritchard, D.M., et al. (2018). Oral iron exacerbates colitis and influences the intestinal microbiome. PLoS ONE 13, e0202460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayneris-Perxachs, J., Moreno-Navarrete, J.M., and Fernández-Real, J.M. (2022). The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 18, 683–698.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, H., and Stappenbeck, T.S. (2013). In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc 8, 2471–2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemeth, E., Rivera, S., Gabayan, V., Keller, C., Taudorf, S., Pedersen, B. K., and Ganz, T. (2004). IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113, 1271–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura, R., and Takeda, K. (2018). Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regener 38, 5.

    Article  Google Scholar 

  • Pandrangi, S.L., Chittineedi, P., Chikati, R., Lingareddy, J.R., Nagoor, M., and Ponnada, S.K. (2022). Role of dietary iron revisited: In metabolism, ferroptosis and pathophysiology of cancer. Am J Cancer Res. 12, 974–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen, S., Saeed, I., Friis, H., and Michaelsen, K.F. (2001). Effect of iron deficiency on Trichuris suis and Ascaris suum infections in pigs. Parasitology 122, 589–598.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Muñoz, M.E., Bergstrom, K., Peng, V., Schmaltz, R., Jimenez-Cardona, R., Marsteller, N., McGee, S., Clavel, T., Ley, R., Fu, J., et al. (2014). Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes 5, 286–485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phipps, O., Al-Hassi, H.O., Quraishi, M.N., Kumar, A., and Brookes, M.J. (2020). Influence of iron on the gut microbiota in colorectal cancer. Nutrients 12, 2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, C., Li, Y., Ma, X., Xie, Y., Xie, M., Zhang, Y., Zhou, W., Yang, Y., Zhang, Z., Zhou, L., et al. (2021). Interactions between commensal bacteria and viral infection: insights for viral disease control in farmed animals. Sci China Life Sci 64, 1437–1448.

    Article  PubMed  Google Scholar 

  • Rishi, G., Huang, G., and Subramaniam, V.N. (2021). Cancer: the role of iron and ferroptosis. Int J Biochem Cell Biol 141, 106094.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez de Medina, F., Romero-Calvo, I., Mascaraque, C., and Martínez-Augustin, O. (2014). Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 20, 2394–2404.

    Article  PubMed  Google Scholar 

  • Song, C.C., Pantopoulos, K., Chen, G.H., Zhong, C.C., Zhao, T., Zhang, D. G., and Luo, Z. (2022). Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1α-PPARγ pathway. Cell Mol Life Sci 79, 394.

    Article  CAS  PubMed  Google Scholar 

  • Teh, M.R., Frost, J.N., Armitage, A.E., and Drakesmith, H. (2021). Analysis of iron and iron-interacting protein dynamics during T-cell activation. Front Immunol 12.

  • Tiwari, S., Begum, S., Moreau, F., Gorman, H., and Chadee, K. (2021). Autophagy is required during high MUC2 mucin biosynthesis in colonic goblet cells to contend metabolic stress. Am J Physiol Gastrointest Liver Physiol 321, G489–G499.

    Article  CAS  PubMed  Google Scholar 

  • Tompkins, G.R., O’Dell, N.L., Bryson, I.T., and Pennington, C.B. (2001). The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine. Curr Microbiol 43, 38–42.

    Article  CAS  PubMed  Google Scholar 

  • Toyoda, T., Cho, Y.M., Mizuta, Y., Akagi, J., and Ogawa, K. (2014). A 13-week subchronic toxicity study of ferric citrate in F344 rats. Food Chem Toxicol 74, 68–75.

    Article  CAS  PubMed  Google Scholar 

  • Volk, J.K., Nyström, E.E.L., van der Post, S., Abad, B.M., Schroeder, B.O., Johansson, Å., Svensson, F., Jäverfelt, S., Johansson, M.E.V., Hansson, G.C., et al. (2019). The Nlrp6 inflammasome is not required for baseline colonic inner mucus layer formation or function. J Exp Med 216, 2602–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Yin, W., Zhu, L., Li, J., Yao, Y., Chen, F., Sun, M., Zhang, J., Shen, N., Song, Y., et al. (2018). Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity 49, 80–92.e7.

    Article  CAS  PubMed  Google Scholar 

  • Werner, T., Wagner, S.J., Martinez, I., Walter, J., Chang, J.S., Clavel, T., Kisling, S., Schuemann, K., and Haller, D. (2011). Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60, 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, E.S., Shrihari, S., Hykes Jr., B.L., Handley, S.A., Andhey, P.S., Huang, Y.J.S., Swain, A., Droit, L., Chebrolu, K.K., Mack, M., et al. (2020). The intestinal microbiome restricts alphavirus infection and dissemination through a bile acid-type I IFN signaling axis. Cell 182, 901–918.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, D., Wu, J., Xing, M., Wang, Y., Zhang, H., Xia, Y., Zhou, P., and Xu, S. (2019). Iron overload threatens the growth of osteoblast cells via inhibiting the PI3K/AKT/FOXO3A/DUSP14 signaling pathway. J Cell Physiol 234, 15668–15677.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, N., Karasawa, T., Wakiya, T., Sadatomo, A., Ito, H., Kamata, R., Watanabe, S., Komada, T., Kimura, H., Sanada, Y., et al. (2020). Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. Am J Transplant 20, 1606–1618.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, B., and Li, H. (2018). Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals 11, 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Chen, X., Hong, J., Tang, A., Liu, Y., Xie, N., Nie, G., Yan, X., and Liang, M. (2021). Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci China Life Sci 64, 352–362.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Yin, L., Zeng, X., Li, J., Yin, Y., Wang, Q., Li, J., and Yang, H. (2022). Dietary high dose of iron aggravates the intestinal injury but promotes intestinal regeneration by regulating intestinal stem cells activity in adult mice with dextran sodium sulfate-induced colitis. Front Vet Sci 9.

  • Zhou, J., Dong, Z., Wan, D., Wang, Q., Haung, J., Huang, P., Li, Y., Ding, X., Li, J., Yang, H., et al. (2020). Effects of iron on intestinal development and epithelial maturation of suckling piglets. J Anim Sci 98.

  • Zou, Z., Shen, Q., Pang, Y., Li, X., Chen, Y., Wang, X., Luo, X., Wu, Z., Bao, Z., Zhang, J., et al. (2019). The synthesized transporter K16APoE enabled the therapeutic HAYED peptide to cross the blood-brain barrier and remove excess iron and radicals in the brain, thus easing Alzheimer’s disease. Drug Deliv Transl Res 9, 394–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Outstanding Youth Fund of Hunan Natural Science Foundation (2021JJ20045), the National Natural Science Foundation of China (32130099), the Science and Technology Program of Hunan Province (2020NK2013, 2020GK4095), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2022370), the key R&D Program of Guangxi Province (2021AB20063), the China Agriculture Research System of MOF and MARA, and the National Center of Technology Innovation for Pigs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Wan or Yulong Yin.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Dong, Z., Tang, W. et al. Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. Sci. China Life Sci. 66, 2006–2019 (2023). https://doi.org/10.1007/s11427-022-2298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2298-1

Navigation