Skip to main content

Advertisement

Log in

Superresolution live-cell imaging reveals that the localization of TMEM106B to filopodia in oligodendrocytes is compromised by the hypomyelination-related D252N mutation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Hypomyelination leukodystrophies constitute a group of heritable white matter disorders exhibiting defective myelin development. Initially identified as a lysosomal protein, the TMEM106B D252N mutant has recently been associated with hypomyelination. However, how lysosomal TMEM106B facilitates myelination and how the D252N mutation disrupts that process are poorly understood. We used superresolution Hessian structured illumination microscopy (Hessian-SIM) and spinning disc-confocal structured illumination microscopy (SD-SIM) to find that the wild-type TMEM106B protein is targeted to the plasma membrane, filopodia, and lysosomes in human oligodendrocytes. The D252N mutation reduces the size of lysosomes in oligodendrocytes and compromises lysosome changes upon starvation stress. Most importantly, we detected reductions in the length and number of filopodia in cells expressing the D252N mutant. PLP1 is the most abundant myelin protein that almost entirely colocalizes with TMEM106B, and coexpressing PLP1 with the D252N mutant readily rescues the lysosome and filopodia phenotypes of cells. Therefore, interactions between TMEM106B and PLP1 on the plasma membrane are essential for filopodia formation and myelination in oligodendrocytes, which may be sustained by the delivery of these proteins from lysosomes via exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aggarwal, S., Yurlova, L., Snaidero, N., Reetz, C., Frey, S., Zimmermann, J., Pähler, G., Janshoff, A., Friedrichs, J., Müller, D.J., et al. (2011). A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell 21, 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Asou, H., Hamada, K., Uyemura, K., Sakota, T., and Hayashi, K. (1994). How do oligodendrocytes ensheath and myelinate nerve fibers? Brain Res Bull 35, 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Bankston, A.N., Forston, M.D., Howard, R.M., Andres, K.R., Smith, A.E., Ohri, S.S., Bates, M.L., Bunge, M.B., and Whittemore, S.R. (2019). Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia 67, 1745–1759.

    PubMed  Google Scholar 

  • Baron, W., and Hoekstra, D. (2010). On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 584, 1760–1770.

    Article  CAS  PubMed  Google Scholar 

  • Brady, O.A., Zheng, Y., Murphy, K., Huang, M., and Hu, F. (2013). The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet 22, 685–695.

    Article  CAS  PubMed  Google Scholar 

  • Chang, A., Xiang, X., Wang, J., Lee, C., Arakhamia, T., Simjanoska, M., Wang, C., Carlomagno, Y., Zhang, G., Dhingra, S., et al. (2022). Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185, 1346–1355.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton, E.L., Milioto, C., Muralidharan, B., Norona, F.E., Edgar, J.R., Soriano, A., Jafar-nejad, P., Rigo, F., Collinge, J., and Isaacs, A.M. (2018). Frontotemporal dementia causative CHMP2B impairs neuronal endolysosomal traffic-rescue by TMEM106B knockdown. Brain 141, 3428–3442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldmann, A., Amphornrat, J., Schönherr, M., Winterstein, C., Möbius, W., Ruhwedel, T., Danglot, L., Nave, K.A., Galli, T., Bruns, D., et al. (2011). Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7. J Neurosci 31, 5659–5672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, T., Lacrampe, A., and Hu, F. (2021). Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 141, 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, T., Sheng, R.R., Solé-Domènech, S., Ullah, M., Zhou, X., Mendoza, C.S., Enriquez, L.C.M., Katz, Paushter, D.H., Sullivan, P.M., et al. (2020). A role of the frontotemporal lobar degeneration risk factor TMEM106B in myelination. Brain 143, 2255–2271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbern, J., Cambi, F., Shy, M., and Kamholz, J. (1999). The molecular pathogenesis of Pelizaeus-Merzbacher disease. Arch Neurol 56, 1210–1214.

    Article  CAS  PubMed  Google Scholar 

  • Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol 221, 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin, A.G., Lounis, B., and Cognet, L. (2014). Super-resolution microscopy approaches for live cell imaging. Biophys J 107, 1777–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Fan, J., Li, L., Liu, H., Wu, R., Wu, Y., Wei, L., Mao, H., Lal, A., Xi, P., et al. (2018). Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol 36, 451–459.

    Article  CAS  PubMed  Google Scholar 

  • Kadandale, P., Stender, J.D., Glass, C.K., and Kiger, A.A. (2010). Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment. Proc Natl Acad Sci USA 107, 10502–10507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer-Albers, E.M., Gehrig-Burger, K., Thiele, C., Trotter, J., and Nave, K.A. (2006). Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: Implications for dysmyelination in spastic paraplegia. J Neurosci 26, 11743–11752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kundu, S.T., Grzeskowiak, C.L., Fradette, J.J., Gibson, L.A., Rodriguez, L. B., Creighton, C.J., Scott, K.L., and Gibbons, D.L. (2018). TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun 9, 2731.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang, C.M., Fellerer, K., Schwenk, B.M., Kuhn, P.H., Kremmer, E., Edbauer, D., Capell, A., and Haass, C. (2012). Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem 287, 19355–19365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, R.E., and Zoncu, R. (2019). The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol 21, 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Levine, B., and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Farias, F.H.G., Dube, U., Del-Aguila, J.L., Mihindukulasuriya, K.A., Fernandez, M.V., Ibanez, L., Budde, J.P., Wang, F., Lake, A.M., et al. (2020). The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol 139, 45–61.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson, A.M., Zhou, X., Perkerson, R.B., Parsons, T.M., Chew, J., Brooks, M., DeJesus-Hernandez, M., Finch, N.C.A., Matchett, B.J., Kurti, A., et al. (2018). Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathol Commun 6, 42–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Platt, F.M., d’Azzo, A., Davidson, B.L., Neufeld, E.F., and Tifft, C.J. (2018). Lysosomal storage diseases. Nat Rev Dis Primers 4, 27–52.

    Article  PubMed  Google Scholar 

  • Ren, Y., van Blitterswijk, M., Allen, M., Carrasquillo, M.M., Reddy, J.S., Wang, X., Beach, T.G., Dickson, D.W., Ertekin-Taner, N., Asmann, Y. W., et al. (2018). TMEM106B haplotypes have distinct gene expression patterns in aged brain. Mol Neurodegener 13, 1.

    Article  CAS  Google Scholar 

  • Saraswat Ohri, S., Bankston, A.N., Mullins, S.A., Liu, Y., Andres, K.R., Beare, J.E., Howard, R.M., Burke, D.A., Riegler, A.S., Smith, A.E., et al. (2018). Blocking autophagy in oligodendrocytes limits functional recovery after spinal cord injury. J Neurosci 38, 5900–5912.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., and Drummen, G.P.C. (2019). Super-resolution microscopy demystified. Nat Cell Biol 21, 72–84.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, B.M., Lang, C.M., Hogl, S., Tahirovic, S., Orozco, D., Rentzsch, K., Lichtenthaler, S.F., Hoogenraad, C.C., Capell, A., Haass, C., et al. (2014). The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J 33, 450–467.

    CAS  PubMed  Google Scholar 

  • Shen, Y.T., Gu, Y., Su, W.F., Zhong, J., Jin, Z.H., Gu, X.S., and Chen, G. (2016). Rab27b is involved in lysosomal exocytosis and proteolipid protein trafficking in oligodendrocytes. Neurosci Bull 32, 331–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigal, Y.M., Zhou, R., and Zhuang, X. (2018). Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, C., Dyment, D., Bent, S.J., Crawford, J., D’Hooghe, M., Kohlschütter, A., Venkateswaran, S., Helman, G., Poll-The, B.T., Makowski, C.C., et al. (2017). A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. Brain 140, 3105–3111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons, M., and Nave, K.A. (2016). Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8, a020479.

    Article  PubMed Central  Google Scholar 

  • Šišková, Z., Baron, W., de Vries, H., and Hoekstra, D. (2006). Fibronectin impedes “myelin” sheet-directed flow in oligodendrocytes: a role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Mol Cell Neurosci 33, 150–159.

    Article  PubMed  Google Scholar 

  • Stadelmann, C., Timmler, S., Barrantes-Freer, A., and Simons, M. (2019). Myelin in the central nervous system: structure, function, and pathology. Physiol Rev 99, 1381–1431.

    Article  CAS  PubMed  Google Scholar 

  • Stagi, M., Klein, Z.A., Gould, T.J., Bewersdorf, J., and Strittmatter, S.M. (2014). Lysosome size, motility and stress response regulated by frontotemporal dementia modifier TMEM106B. Mol Cell Neurosci 61, 226–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajkovic, K., Dhaunchak, A.S., Goncalves, J..T., Wenzel, D., Schneider, A., Bunt, G., Nave, K.A., and Simons, M. (2006). Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol 172, 937–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropea, T.F., Mak, J., Guo, M.H., Xie, S.X., Suh, E., Rick, J., Siderowf, A., Weintraub, D., Grossman, M., Irwin, D., et al. (2019). TMEM106B effect on cognition in Parkinson disease and frontotemporal dementia. Ann Neurol 85, 801–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Deerlin, V.M., Sleiman, P.M.A., Martinez-Lage, M., Chen-Plotkin, A., Wang, L.S., Graff-Radford, N.R., Dickson, D.W., Rademakers, R., Boeve, B.F., Grossman, M., et al. (2010). Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42, 234–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, N.I., ffrench-Constant, C., and van der Knaap, M.S. (2021). Hypomyelinating leukodystrophies—unravelling myelin biology. Nat Rev Neurol 17, 88–103.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Kubisiak, T., Ji, H., Xiao, J., Wang, J., and Burmeister, M. (2018). The recurrent mutation in TMEM106B also causes hypomyelinating leukodystrophy in China and is a CpG hotspot. Brain 141, e36.

    Article  PubMed  Google Scholar 

  • Yim, W.W.Y., and Mizushima, N. (2020). Lysosome biology in autophagy. Cell Discov 6, 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., et al. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Zhao, S., Li, L., Huang, X., Xing, S., Zhang, Y., Qiu, G., Han, Z., Shang, Y., Sun, D., et al. (2022). Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 40, 606–617.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Duan, R., Li, L., Xing, S., Ji, H., Yan, H., Gao, K., Wang, J., Wang, J., and Chen, L. (2020). Live-cell superresolution pathology reveals different molecular mechanisms of Pelizaeus-Merzbacher disease. Sci Bull 65, 2061–2064.

    Article  CAS  Google Scholar 

  • Zhou, X., Nicholson, A.M., Ren, Y., Brooks, M., Jiang, P., Zuberi, A., Phuoc, H.N., Perkerson, R.B., Matchett, B., Parsons, T.M., et al. (2020). Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 143, 1905–1919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Sun, L., Brady, O.A., Murphy, K.A., and Hu, F. (2017). Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency. Acta Neuropathol Commun 5, 1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81925022, 61827825, 32227802, 92054301), the Fundamental Research Center Project of the National Natural Science Foundation of China (T2288102), the National Science and Technology Major Project Program (2022YFC3400600), Beijing Natural Science Foundation Key Research Topics (Z20J00059), UMHS-PUHSC Joint Institute for Translational and Clinical Research (BMU2019JI009), Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases (BZ0317) and China Postdoctoral Science Foundation (2021M690465). We thank the High-performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiqun Zhao, Jingmin Wang or Liangyi Chen.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, S., Zheng, X., Yan, H. et al. Superresolution live-cell imaging reveals that the localization of TMEM106B to filopodia in oligodendrocytes is compromised by the hypomyelination-related D252N mutation. Sci. China Life Sci. 66, 1858–1868 (2023). https://doi.org/10.1007/s11427-022-2290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2290-1

Keywords

Navigation