Skip to main content
Log in

Lysosomal cholesterol accumulation is commonly found in most peroxisomal disorders and reversed by 2-hydroxypropyl-β-cyclodextrin

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Peroxisomal disorders (PDs) are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions. X-linked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene, which encodes a transporter mediating the uptake of very long-chain fatty acids (VLCFAs). The curative approaches for PDs are very limited. Here, we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs. We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome. 2-Hydroxypropyl-β-cyclodextrin (HPCD) effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes. In ABCD1 knockdown cells, HPCD treatment lowered reactive oxygen species and VLCFA to normal levels. In Abcd1 knockout mice, HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex. The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration. Together, our results suggest that defective cholesterol transport underlies most, if not all, PDs, and that HPCD can serve as a novel and effective strategy for the treatment of PDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubourg, P. (2015). Cerebral adrenoleukodystrophy: a demyelinating disease that leaves the door wide open. Brain 138, 3133–3136.

    Article  PubMed  Google Scholar 

  • Beckmann, N.B., Miller, W.P., Dietrich, M.S., and Orchard, P.J. (2018). Quality of life among boys with adrenoleukodystrophy following hematopoietic stem cell transplant. Child Neuropsychol 24, 986–998.

    Article  PubMed  Google Scholar 

  • Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3, 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Cao, J., Wang, J., Qi, W., Miao, H.H., Wang, J., Ge, L., DeBose-Boyd, R. A., Tang, J.J., Li, B.L., and Song, B.L. (2007). Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab 6, 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C.C., Veres, G., Schmidt, M., Kutschera, I., Vidaud, M., Abel, U., Dal-Cortivo, L., Caccavelli, L., et al. (2009). Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823.

    Article  CAS  PubMed  Google Scholar 

  • Casasnovas, C., Ruiz, M., Schlüter, A., Naudí, A., Fourcade, S., Veciana, M., Castañer, S., Albertí, A., Bargalló, N., Johnson, M., et al. (2019). Biomarker identification, safety, and efficacy of high-dose antioxidants for adrenomyeloneuropathy: a phase II pilot study. Neurotherapeutics 16, 1167–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, B.B., Liao, Y.C., Qi, W., Xie, C., Du, X., Wang, J., Yang, H., Miao, H. H., Li, B.L., and Song, B.L. (2015). Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161, 291–306.

    Article  CAS  PubMed  Google Scholar 

  • Cipolla, C.M., and Lodhi, I.J. (2017). Peroxisomal dysfunction in age-related diseases. Trends Endocrinol Metab 28, 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, S., Dulcey, A.E., Hu, X., Wassif, C.A., Porter, F.D., Austin, C.P., Ory, D.S., Marugan, J., and Zheng, W. (2017). Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy 13, 1435–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, A., Brown, M.S., Anderson, D.D., Goldstein, J.L., and Radhakrishnan, A. (2014). Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3, e02882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasouki, M. (2017). Peroxisomal disorders: clinical and biochemical laboratory aspects. In: Garg, U., and Smith, L.D., eds. Biomarkers in Inborn Errors of Metabolism. Amsterdam: Elsevier. 235–282.

    Chapter  Google Scholar 

  • Davidson, C.D., Ali, N.F., Micsenyi, M.C., Stephney, G., Renault, S., Dobrenis, K., Ory, D.S., Vanier, M.T., and Walkley, S.U. (2009). Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deon, M., Marchetti, D.P., Donida, B., Wajner, M., and Vargas, C. (2016). Oxidative stress in patients with X-linked adrenoleukodystrophy. Cell Mol Neurobiol 36, 497–512.

    Article  CAS  PubMed  Google Scholar 

  • Eichler, F., Duncan, C., Musolino, P.L., Orchard, P.J., De Oliveira, S., Thrasher, A.J., Armant, M., Dansereau, C., Lund, T.C., Miller, W.P., et al. (2017). Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 377, 1630–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelen, M., Kemp, S., de Visser, M., van Geel, B.M., Wanders, R.J., Aubourg, P., and Poll-The, B. (2012). X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 7, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelen, M., Kemp, S., and Poll-The, B.T. (2014). X-linked adrenoleukodystrophy: pathogenesis and treatment. Curr Neurol Neurosci Rep 14, 486.

    Article  PubMed  Google Scholar 

  • Fan, J., Li, X., Issop, L., Culty, M., and Papadopoulos, V. (2016). ACBD2/ECI2-mediated peroxisome-mitochondria interactions in Leydig cell steroid biosynthesis. Mol Endocrinol 30, 763–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feltes, M.K., Gale, S.E., Moores, S., Ory, D.S., and Schaffer, J.E. (2020). Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment. J Lipid Res 61, 403–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forss-Petter, S., Werner, H., Berger, J., Lassmann, H., Molzer, B., Schwab, M.H., Bernheimer, H., Zimmermann, F., and Nave, K.A. (1997). Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50, 829–843.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Y., Mu, D., Prabhakar, S., Moser, A., Musolino, P., Ren, J.Q., Breakefield, X.O., Maguire, C.A., and Eichler, F.S. (2015). Adenoassociated virus serotype 9-mediated gene therapy for X-linked adrenoleukodystrophy. Mol Ther 23, 824–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, R., Cheng, D., Coyaud, É., Freeman, S., Di Pietro, E., Wang, Y., Vissa, A., Yip, C.M., Fairn, G.D., Braverman, N., et al. (2017). VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol 216, 367–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinecke, S., Richert, S., de Hoz, L., Brügger, B., Kungl, T., Asadollahi, E., Quintes, S., Blanz, J., McGonigal, R., Naseri, K., et al. (2017). Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. eLife 6, e23332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klouwer, F.C.C., Berendse, K., Ferdinandusse, S., Wanders, R.J.A., Engelen, M., and Poll-The, B.T. (2015). Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 10, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon, H.J., Abi-Mosleh, L., Wang, M.L., Deisenhofer, J., Goldstein, J.L., Brown, M.S., and Infante, R.E. (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, B.T., Sun, M., Li, Y.F., Wang, J.Q., Zhou, Z.M., Song, B.L., and Luo, J. (2020). Disruption of the ERLIN-TM6SF2-APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genet 16, e1008955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, C.Y., Davis, O.B., Shin, H.R., Zhang, J., Berdan, C.A., Jiang, X., Counihan, J.L., Ory, D.S., Nomura, D.K., and Zoncu, R. (2019). ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 21, 1206–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Li, H., Repa, J.J., Turley, S.D., and Dietschy, J.M. (2008). Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res 49, 663–669.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Ramirez, C.M., Miller, A.M., Repa, J.J., Turley, S.D., and Dietschy, J.M. (2010). Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J Lipid Res 51, 933–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., and Dietschy, J. M. (2009). Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1−/− mouse. Proc Natl Acad Sci USA 106, 2377–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T.F., Tang, J.J., Li, P.S., Shen, Y., Li, J.G., Miao, H.H., Li, B.L., and Song, B.L. (2012). Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab 16, 213–225.

    Article  CAS  PubMed  Google Scholar 

  • Lodhi, I.J., and Semenkovich, C.F. (2014). Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19, 380–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, J., Jiang, L., Yang, H., and Song, B.L. (2017). Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic 18, 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Jiang, L.Y., Yang, H., and Song, B.L. (2019). Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem Sci 44, 273–292.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Liu, Y.B., and Song, B.L. (2021). Hitching a ride to the top: peroxisomes fuel cilium with cholesterol. Sci China Life Sci 64, 478–481.

    Article  PubMed  Google Scholar 

  • Maarup, T.J., Chen, A.H., Porter, F.D., Farhat, N.Y., Ory, D.S., Sidhu, R., Jiang, X., and Dickson, P.I. (2015). Intrathecal 2-hydroxypropyl-beta-cyclodextrin in a single patient with Niemann-Pick C1. Mol Genet Metab 116, 75–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa, M., and Fairn, G.D. (2015). Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J Cell Sci 128, 1422–1433.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa, M. (2017). Domain 4 (D4) of perfringolysin O to visualize cholesterol in cellular membranes—the update. Sensors 17, 504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malinouski, M., Zhou, Y., Belousov, V.V., Hatfield, D.L., and Gladyshev, V.N. (2011). Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 6, e14564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallack, E.J., Turk, B., Yan, H., and Eichler, F.S. (2019). The landscape of hematopoietic stem cell transplant and gene therapy for X-linked adrenoleukodystrophy. Curr Treat Options Neurol 21, 61.

    Article  PubMed  Google Scholar 

  • Markvicheva, K.N., Bilan, D.S., Mishina, N.M., Gorokhovatsky, A.Y., Vinokurov, L.M., Lukyanov, S., and Belousov, V.V. (2011). A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19, 1079–1084.

    Article  CAS  PubMed  Google Scholar 

  • Marques, A.R.A., and Saftig, P. (2019). Lysosomal storage disorders—challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 132, jcs221739.

    Article  PubMed  Google Scholar 

  • Morita, M., Honda, A., Kobayashi, A., Watanabe, Y., Watanabe, S., Kawaguchi, K., Takashima, S., Shimozawa, N., and Imanaka, T. (2018). Effect of lorenzo’s oil on hepatic gene expression and the serum fatty acid level in abcd1-deficient mice. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., and Peters, V., eds. JIMD Reports. Berlin, Heidelberg: Springer. 67–74.

    Google Scholar 

  • Moser, H.W., Mahmood, A., and Raymond, G.V. (2007). X-linked adrenoleukodystrophy. Nat Rev Neurol 3, 140–151.

    Article  Google Scholar 

  • Musolino, P.L., Gong, Y., Snyder, J.M.T., Jimenez, S., Lok, J., Lo, E.H., Moser, A.B., Grabowski, E.F., Frosch, M.P., and Eichler, F.S. (2015). Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain 138, 3206–3220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naito, T., Ercan, B., Krshnan, L., Triebl, A., Koh, D.H.Z., Wei, F.Y., Tomizawa, K., Torta, F.T., Wenk, M.R., and Saheki, Y. (2019). Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife 8, e51401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofman, R., Dijkstra, I.M.E., van Roermund, C.W.T., Burger, N., Turkenburg, M., van Cruchten, A., van Engen, C.E., Wanders, R.J.A., and Kemp, S. (2010). The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol Med 2, 90–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ory, D.S., Ottinger, E.A., Farhat, N.Y., King, K.A., Jiang, X., Weissfeld, L., Berry-Kravis, E., Davidson, C.D., Bianconi, S., Keener, L.A., et al. (2017). Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial. Lancet 390, 1758–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othman, M.A., Yuyama, K., Murai, Y., Igarashi, Y., Mikami, D., Sivasothy, Y., Awang, K., and Monde, K. (2019). Malabaricone C as natural sphingomyelin synthase inhibitor against diet-induced obesity and its lipid metabolism in mice. ACS Med Chem Lett 10, 1154–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson, M.C., Vanier, M.T., Suzuki, K., Morris, J.A., Carstea, E., Neufeld, E.B., Blanchette-Mackie, J.E., and Pentchev, P.G. (2019). Niemann-Pick disease type C: a lipid trafficking disorder. In: Valle, D.L., Antonarakis, S., Ballabio, A., Beaudet, A.L., and Mitchell, G.A., eds. The Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill Education.

    Google Scholar 

  • Peake, K.B., and Vance, J.E. (2012). Normalization of cholesterol homeostasis by 2-hydroxypropyl-β-cyclodextrin in neurons and glia from Niemann-Pick C1 (NPC1)-deficient mice. J Biol Chem 287, 9290–9298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfisterer, S.G., Peränen, J., and Ikonen, E. (2016). LDL-cholesterol transport to the endoplasmic reticulum: current concepts. Curr Opin Lipidol 27, 282–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai, B.K., Jasuja, R., Simard, J.R., and Hamilton, J.A. (2009). Fast diffusion of very long chain saturated fatty acids across a bilayer membrane and their rapid extraction by cyclodextrins: implications for adrenoleukodystrophy. J Biol Chem 284, 33296–33304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitha, J., Irie, T., Sklar, P.B., and Nye, J.S. (1988). Drug solubilizers to aid pharmacologists: Amorphous cyclodextrin derivatives. Life Sci 43, 493–502.

    Article  CAS  PubMed  Google Scholar 

  • Poosch, M.S., and Yamazaki, R.K. (1986). Determination of peroxisomal fatty acyl-CoA oxidase activity using a lauroyl-CoA-based fluorometric assay. Biochim Biophys Acta 884, 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, J.K., and Hashimoto, T. (2001). Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu Rev Nutr 21, 193–230.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Pascau, L., Vilalta, A., Cerrada, M., Traver, E., Forss-Petter, S., Weinhofer, I., Bauer, J., Kemp, S., Pina, G., Pascual, S., et al. (2021). The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med 13, eabc0555.

    Article  PubMed  Google Scholar 

  • Sandalio, L.M., Rodríguez-Serrano, M., Romero-Puertas, M.C., and del Río, L.A. (2013). Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: del Río, L., eds. Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry. Dordrecht: Springer. 231–255.

    Chapter  Google Scholar 

  • Schedin, S., Sindelar, P.J., Pentchev, P., Brunk, U., and Dallner, G. (1997). Peroxisomal impairment in Niemann-Pick type C disease. J Biol Chem 272, 6245–6251.

    Article  CAS  PubMed  Google Scholar 

  • Singhal, A., Szente, L., Hildreth, J.E.K., and Song, B. (2018). Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis 9, 1019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, J.J., and Aitchison, J.D. (2013). Peroxisomes take shape. Nat Rev Mol Cell Biol 14, 803–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk, B.R., Theda, C., Fatemi, A., and Moser, A.B. (2020). X-linked adrenoleukodystrophy: pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 80, 52–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacca, F., Vossio, S., Mercier, V., Moreau, D., Johnson, S., Scott, C.C., Montoya, J.P., Moniatte, M., and Gruenberg, J. (2019). Cyclodextrin triggers MCOLN1-dependent endo-lysosome secretion in Niemann-Pick type C cells. J Lipid Res 60, 832–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valm, A.M., Cohen, S., Legant, W.R., Melunis, J., Hershberg, U., Wait, E., Cohen, A.R., Davidson, M.W., Betzig, E., and Lippincott-Schwartz, J. (2017). Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Geel, B.M., Poll-The, B.T., Verrips, A., Boelens, J.J., Kemp, S., and Engelen, M. (2015). Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: a retrospective study. J Inherit Metab Dis 38, 359–361.

    Article  CAS  PubMed  Google Scholar 

  • Vance, J.E., and Karten, B. (2014). Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 55, 1609–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vite, C.H., Bagel, J.H., Swain, G.P., Prociuk, M., Sikora, T.U., Stein, V.M., O’Donnell, P., Ruane, T., Ward, S., Crooks, A., et al. (2015). Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med 7, 276ra226.

    Article  Google Scholar 

  • Wanders, R.J.A. (2018). Peroxisomal disorders: Improved laboratory diagnosis, new defects and the complicated route to treatment. Mol Cell Probes 40, 60–69.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Ma, Q., Qi, Y., Dong, J., Du, X., Rae, J., Wang, J., Wu, W.F., Brown, A.J., Parton, R.G., et al. (2019). ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Mol Cell 73, 458–473.e7.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.Q., Lin, Z.C., Li, L.L., Zhang, S.F., Li, W.H., Liu, W., Song, B.L., and Luo, J. (2021). SUMOylation of the ubiquitin ligase IDOL decreases LDL receptor levels and is reversed by SENP1. J Biol Chem 296, 100032.

    Article  CAS  PubMed  Google Scholar 

  • Ward, S., O’Donnell, P., Fernandez, S., and Vite, C.H. (2010). 2-Hydroxypropyl-β-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann-Pick type C disease. Pediatr Res 68, 52–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinhofer, I., Forss-Petter, S., Kunze, M., Žigman, M., and Berger, J. (2005). X-linked adrenoleukodystrophy mice demonstrate abnormalities in cholesterol metabolism. FEBS Lett 579, 5512–5516.

    Article  CAS  PubMed  Google Scholar 

  • Wiesinger, C., Eichler, F.S., and Berger, J. (2015). The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. Appl Clin Genet 8, 109–121.

    PubMed  PubMed Central  Google Scholar 

  • Woudenberg, J., Rembacz, K.P., Hoekstra, M., Pellicoro, A., van den Heuvel, F.A.J., Heegsma, J., van IJzendoorn, S.C.D., Holzinger, A., Imanaka, T., Moshage, H., et al. (2010). Lipid rafts are essential for peroxisome biogenesis in HepG2 cells. Hepatology 52, 623–633.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Luo, J., Hu, A., Xiao, T., Li, M., Kong, Z., Jiang, L., Zhou, Z., Liao, Y., Xie, C., et al. (2019). Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Sci China Life Sci 62, 1117–1135.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., Song, B.L., and Luo, J. (2021a). Peroxisomes in intracellular cholesterol transport: from basic physiology to brain pathology. Explor Neuroprot Ther 1, 127–145.

    Article  Google Scholar 

  • Xiao, J., Xiong, Y., Yang, L.T., Wang, J.Q., Zhou, Z.M., Dong, L.W., Shi, X.J., Zhao, X., Luo, J., and Song, B.L. (2021b). POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation. Protein Cell 12, 279–296.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., Brown, M.S., Shelton, J.M., Richardson, J.A., Goldstein, J.L., and Liang, G. (2011). Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc Natl Acad Sci USA 108, 15330–15335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa, N., Shimada, K., Miyazaki, T., Kume, A., Kitamura, Y., Sumiyoshi, K., Kiyanagi, T., Iesaki, T., Inoue, N., and Daida, H. (2008). Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages. Lipids Health Dis 7, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, H. (2019). Extended synaptotagmins, peroxisome-endoplasmic reticulum contact and cholesterol transport. Sci China Life Sci 62, 1266–1269.

    Article  PubMed  Google Scholar 

  • Yao, J., Ho, D., Calingasan, N.Y., Pipalia, N.H., Lin, M.T., and Beal, M.F. (2012). Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. J Exp Med 209, 2501–2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J., Eichler, F., Biffi, A., Duncan, C.N., Williams, D.A., and Majzoub, J.A. (2020). The changing face of adrenoleukodystrophy. Endocrine Rev 41, 577–593.

    Article  Google Scholar 

  • Zimmer, S., Grebe, A., Bakke, S.S., Bode, N., Halvorsen, B., Ulas, T., Skjelland, M., De Nardo, D., Labzin, L.I., Kerksiek, A., et al. (2016). Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med 8, 333ra50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation Grant (2021M692478), the Ministry of Science and Technology of China (2018YFA0800703), the National Natural Science Foundation of China (32293203, 31771568), and 111 Project of Ministry of Education of China (B16036). B.L. Song acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Luo.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Xiao, J., Liu, S. et al. Lysosomal cholesterol accumulation is commonly found in most peroxisomal disorders and reversed by 2-hydroxypropyl-β-cyclodextrin. Sci. China Life Sci. 66, 1786–1799 (2023). https://doi.org/10.1007/s11427-022-2260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2260-4

Keywords

Navigation