Skip to main content
Log in

Pseudo-chromosome—length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data

Raw sequence reads are deposited at NCBI under the project accession number PRJNA792465. The genome assembly files are under accession numbers JAKUDJ000000000.

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Beck, B. D., Hah, D. S., and Lee, S. H. (2008). XPB and XPD between transcription and DNA repair. Adv Exp Med Biol 637, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya, S., Lou, X., Hwang, P., Rajashankar, K.R., Wang, X., Gustafsson, J.A., Fletterick, R.J., Jacobson, R.H., and Webb, P. (2014). Structural and functional insight into TAF1–TAF7, a subcomplex of transcription factor II D. Proc Natl Acad Sci USA 111, 9103–9108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome Res 14, 988–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco, E., Parra, G., and Guigó, R. (2007). Using geneid to identify genes. Curr Protoc Bioinformatics Chapter 4, Unit 4.3.

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Chen, N. (2004). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics 25, 4–10.

    CAS  Google Scholar 

  • Chong, P.L.G., Cossins, A.R., and Weber, G. (1983). A differential polarized phase fluorometric study of the effects of high hydrostatic pressure upon the fluidity of cellular membranes. Biochemistry 22, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Crenshaw, H.C., Allen, J.A., Skeen, V., Harris, A., and Salmon, E.D. (1996). Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells. Exp Cell Res 227, 285–297.

    Article  CAS  PubMed  Google Scholar 

  • De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271.

    Article  CAS  PubMed  Google Scholar 

  • Dierckxsens, N., Mardulyn, P., and Smits, G. (2016). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45, e18.

    PubMed Central  Google Scholar 

  • Du, M., Peng, X., Zhang, H., Ye, C., Dasgupta, S., Li, J., Li, J., Liu, S., Xu, H., Chen, C., et al. (2021). Geology, environment, and life in the deepest part of the world’s oceans. Innovation 2, 100109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016a). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3, 99–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016b). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3, 95–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emms, D.M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller, G., and Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1, 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Li, S., Li, Q., Zhang, F., Sun, M., Wan, Z., and Wang, S. (2019). Protective effects of salvianolic acid B against hydrogen peroxide-induced apoptosis of human umbilical vein endothelial cells and underlying mechanisms. Int J Mol Med 44, 457–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Z., and Wilkinson, M. (2017). An RNA decay factor wears a new coat: UPF3B modulates translation termination. F1000Res 6, 2159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiman, T.M., and Muegge, K. (2000). Lsh, an SNF2/helicase family member, is required for proliferation of mature T lymphocytes. Proc Natl Acad Sci USA 97, 4772–4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerringer, M.E., Popp, B.N., Linley, T.D., Jamieson, A.J., and Drazen, J.C. (2017). Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis. Deep Sea Res Part I-Oceanogr Res Papers 121, 110–120.

    Article  CAS  Google Scholar 

  • Harris, R.M., and Hofmann, H.A. (2015). Seeing is believing: dynamic evolution of gene families. Proc Natl Acad Sci USA 112, 1252–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfner, K.P., and Tainer, J.A. (2003). Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr Opin Struct Biol 13, 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, A.M., Pineda, A.A., Winfree, L.M., Brown, G.T., Laukoetter, M. G., and Nusrat, A. (2007). Organized migration of epithelial cells requires control of adhesion and protrusion through Rho kinase effectors. Am J Physiol-Gastrointest Liver Physiol 292, G806–G817.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Fan, J., Sun, Z., and Liu, S. (2020). NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W.C., Mohapatra, A., Thu, P.T., Chen, H.M., and Liao, T.Y. (2020). A review of the genus Strophidon (Anguilliformes: Muraenidae), with description of a new species. J Fish Biol 97, 1462–1480.

    Article  PubMed  Google Scholar 

  • Inoue, J.G., Miya, M., Miller, M.J., Sado, T., Hanel, R., Hatooka, K., Aoyama, J., Minegishi, Y., Nishida, M., and Tsukamoto, K. (2010). Deep-ocean origin of the freshwater eels. Biol Lett 6, 363–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii, A., Sato, T., Wachi, M., Nagai, K., and Kato, C. (2004). Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150, 1965–1972.

    Article  CAS  PubMed  Google Scholar 

  • Jirimutu, Wang, Z., Ding, G., Chen, G., Sun, Y., Sun, Z., Zhang, H., Wang, L., Hasi, S., Zhang, Y., et al. (2012). Genome sequences of wild and domestic bactrian camels. Nat Commun 3, 1202.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, B.B., and Boetius, A. (2007). Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5, 770–781.

    Article  PubMed  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato, M., Hayashi, R., Tsuda, T., and Taniguchi, K. (2002). High pressure-induced changes of biological membrane. Eur J Biochem 269, 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielbasa, S.M., Wan, R., Sato, K., Horton, P., and Frith, M.C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Res 21, 487–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaFlamme, S.E., Mathew-Steiner, S., Singh, N., Colello-Borges, D., and Nieves, B. (2018). Integrin and microtubule crosstalk in the regulation of cellular processes. Cell Mol Life Sci 75, 4177–4185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, Y., Sun, J., Tian, R., Bartlett, D.H., Li, R., Wong, Y.H., Zhang, W., Qiu, J.W., Xu, T., He, L.S., et al. (2017). Molecular adaptation in the world’s deepest-living animal: insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol Ecol 26, 3732–3743.

    Article  CAS  PubMed  Google Scholar 

  • Lan, Y., Sun, J., Xu, T., Chen, C., Tian, R., Qiu, J.W., and Qian, P.Y. (2018). De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish. BMC Genomics 19, 394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, G., Jin, D., and Zhong, T.P. (2019). Tubgcp3 is required for retinal progenitor cell proliferation during zebrafish development. Front Mol Neurosci 12, 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

  • Liang, L., Chen, J., Li, Y., and Zhang, H. (2020). Insights into high-pressure acclimation: comparative transcriptome analysis of sea cucumber Apostichopus japonicus at different hydrostatic pressure exposures. BMC Genomics 21, 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879.

    Article  CAS  PubMed  Google Scholar 

  • Morita, T. (2008). Comparative sequence analysis of myosin heavy chain proteins from congeneric shallow- and deep-living rattail fish (genus Coryphaenoides). J Exp Biol 211, 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  • Mu, Y., Bian, C., Liu, R., Wang, Y., Shao, G., Li, J., Qiu, Y., He, T., Li, W., Ao, J., et al. (2021). Whole genome sequencing of a snailfish from the Yap Trench (∼7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genetics 17, e1009530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Poulsen, J.Y., Miller, M.J., Sado, T., Hanel, R., Tsukamoto, K., and Miya, M. (2018). Resolving deep-sea pelagic saccopharyngiform eel mysteries: identification of Neocyema and Monognathidae leptocephali and establishment of a new fish family “Neocyematidae” based on larvae, adults and mitogenomic gene orders. PLoS ONE 13, e0199982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rechkunova, N.I., Maltseva, E.A., and Lavrik, O.I. (2019). Post-translational modifications of nucleotide excision repair proteins and their role in the DNA repair. Biochem Moscow 84, 1008–1020.

    Article  CAS  Google Scholar 

  • Rousselet, A., Euteneuer, U., Bordes, N., Ruiz, T., Hui Bon Hua, G., and Bornens, M. (2001). Structural and functional effects of hydrostatic pressure on centrosomes from vertebrate cells. Cell Motil Cytoskeleton 48, 262–276.

    Article  CAS  PubMed  Google Scholar 

  • Rees, D.C., Johnson, E., and Lewinson, O. (2009). ABC transporters: the power to change. Nat Rev Mol Cell Biol 10, 218–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, S., Bridges, S., Magbanua, Z.V., and Peterson, D.G. (2008). Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res 36, 2284–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen, A., Kaarniranta, K., and Kauppinen, A. (2016). Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 28, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Santini, F., Kong, X., Sorenson, L., Carnevale, G., Mehta, R.S., and Alfaro, M.E. (2013). A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). Mol Phylogenet Evol 69, 884–894.

    Article  CAS  PubMed  Google Scholar 

  • Scott, J.W., Hawley, S.A., Green, K.A., Anis, M., Stewart, G., Scullion, G. A., Norman, D.G., and Hardie, D.G. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113, 274–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, H., Taniguchi, H., Hippo, Y., Hayashizaki, Y., Aburatani, H., and Ishikawa, T. (2003). Characterization of the mouse Abcc12 gene and its transcript encoding an ATP-binding cassette transporter, an orthologue of human ABCC12. Gene 310, 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Shuttleworth, J. (1995). The regulation and functions of cdk7. Prog Cell Cycle Res 1, 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Siebenaller, J.F., and Garrett, D.J. (2002). The effects of the deep-sea environment on transmembrane signaling. Comp Biochem Physiol Part B-Biochem Mol Biol 131, 675–694.

    Article  Google Scholar 

  • Simäo, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

    Article  PubMed  Google Scholar 

  • Somero, G.N. (1992). Adaptations to high hydrostatic pressure. Annu Rev Physiol 54, 557–577.

    Article  CAS  PubMed  Google Scholar 

  • Stanke, M., Diekhans, M., Baertsch, R., and Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34, W609–W612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tammur, J., Prades, C., Arnould, I., Rzhetsky, A., Hutchinson, A., Adachi, M., Schuetz, J.D., Swoboda, K.J., Ptácek, L.J., Rosier, M., et al. (2001). Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene 273, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Bowers, J.E., Wang, X., Ming, R., Alam, M., and Paterson, A.H. (2008). Synteny and collinearity in plant genomes. Science 320, 486–488.

    Article  CAS  PubMed  Google Scholar 

  • Vallée, B., Cuberos, H., Doudeau, M., Godin, F., Gosset, D., Vourc’h, P., Andres, C.R., and Bénédetti, H. (2018). LIMK2-1, a new isoform of human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b. Biochem J 475, 3745–3761.

    Article  PubMed  Google Scholar 

  • Wang, K., Shen, Y., Yang, Y., Gan, X., Liu, G., Hu, K., Li, Y., Gao, Z., Zhu, L., Yan, G., et al. (2019). Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat Ecol Evol 3, 823–833.

    Article  PubMed  Google Scholar 

  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yano, Y., Nakayama, A., Ishihara, K., and Saito, H. (1998). Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64, 479–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., and Onozato, H. (2004). Hydrostatic pressure treatment during the first mitosis does not suppress the first cleavage but the second one. Aquaculture 240, 101–113.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB42000000, XDB06010105), the National Key Research and Development Program of China (2018YFC0309800), the National Natural Science Foundation of China (41876179), and the Major scientific and technological projects of Hainan Province (2019PT03) to S.P.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisheng He, Shunping He or Chengchi Fang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zeng, H., Lv, W. et al. Pseudo-chromosome—length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. Sci. China Life Sci. 66, 1379–1391 (2023). https://doi.org/10.1007/s11427-022-2251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2251-8

Navigation