Skip to main content
Log in

Vitellogenin accumulation leads to reproductive senescence by impairing lysosomal function

  • Research Paper
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The maintenance of proteostasis is essential for cellular and organism healthspan. How proteostasis collapse influences reproductive span remains largely unclear. In Caenorhabditis elegans, excess accumulation of vitellogenins, the major components in yolk proteins, is crucial for the development of the embryo and occurs throughout the whole body during the aging process. Here, we show that vitellogenin accumulation leads to reproduction cessation. Excess vitellogenin is accumulated in the intestine and transported into the germline, impairing lysosomal activity in these tissues. The lysosomal function in the germline is required for reproductive span by maintaining oocyte quality. In contrast, autophagy and sperm depletion are not involved in vitellogenin accumulation-induced reproductive aging. Our findings provide insights into how proteome imbalance has an impact on reproductive aging and imply that improvement of lysosomal function is an effective approach for mid-life intervention for maintaining reproductive health in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiour, N., Imbaud, S., Clément, G., Agier, N., Zivy, M., Valot, B., Balliau, T., Armengaud, P., Quilleré, I., Cañas, R., et al. (2012). The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J Exp Bot 63, 5017–5033.

    Article  CAS  PubMed  Google Scholar 

  • Andux, S., and Ellis, R.E. (2008). Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS Genet 4, e1000295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baxi, K., Ghavidel, A., Waddell, B., Harkness, T.A., and de Carvalho, C.E. (2017). Regulation of lysosomal function by the DAF-16 Forkhead transcription factor couples reproduction to aging in Caenorhabditis elegans. Genetics 207, 83–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert, K.A., and Kenyon, C. (2017). A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 551, 629–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broekmans, F.J., Knauff, E.A.H., te Velde, E.R., Macklon, N.S., and Fauser, B.C. (2007). Female reproductive ageing: Current knowledge and future trends. Trends Endocrinol Metab 18, 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., Song, W., Li, J., Jing, Y., Liang, C., Zhang, L., Zhang, X., Zhang, W., Liu, B., An, Y., et al. (2022). The landscape of aging. Sci China Life Sci doi: https://doi.org/10.1007/s11427-022-2161-3.

  • David, D.C., Ollikainen, N., Trinidad, J.C., Cary, M.P., Burlingame, A.L., and Kenyon, C. (2010). Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8, e1000450.

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Cruz-Ruiz, P., Hernando-Rodríguez, B., Pérez-Jiménez, M.M., Rodríguez-Palero, M.J., Martínez-Bueno, M.D., Pla, A., Gatsi, R., and Artal-Sanz, M. (2021). Prohibitin depletion extends lifespan of a TORC2/SGK-1 mutant through autophagy and the mitochondrial UPR. Aging Cell 20, e13359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePina, A.S., Iser, W.B., Park, S.S., Maudsley, S., Wilson, M.A., and Wolkow, C.A. (2011). Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. BMC Physiol 11, 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen, R.H. (2019). CEH-60/PBX and UNC-62/MEIS coordinate a metabolic switch that supports reproduction in C. elegans. Dev Cell 49, 235–250.e7.

    Article  CAS  PubMed  Google Scholar 

  • Dowen, R.H., Breen, P.C., Tullius, T., Conery, A.L., and Ruvkun, G. (2016). A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport. Genes Dev 30, 1515–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvvuri, M., Gong, Y., Chatterji, D., and Krise, J.P. (2004). Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem 279, 32367–32372.

    Article  CAS  PubMed  Google Scholar 

  • Ezcurra, M., Benedetto, A., Sornda, T., Gilliat, A.F., Au, C., Zhang, Q., van Schelt, S., Petrache, A.L., Wang, H., de la Guardia, Y., et al. (2018). C. elegans eats its own intestine to make yolk leading to multiple senescent pathologies. Curr Biol 28, 2544–2556.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folick, A., Oakley, H.D., Yu, Y., Armstrong, E.H., Kumari, M., Sanor, L., Moore, D.D., Ortlund, E.A., Zechner, R., and Wang, M.C. (2015). Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant, B., and Hirsh, D. (1999). Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10, 4311–4326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., Paupard, M.C., Hall, D.H., and Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, S.E., Evason, K., Xiong, C., and Kornfeld, K. (2007). Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet 3, e25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imanikia, S., Özbey, N.P., Krueger, C., Casanueva, M.O., and Taylor, R.C. (2019). Neuronal XBP-1 activates intestinal lysosomes to improve proteostasis in C. elegans. Curr Biol 29, 2322–2338.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imielinski, M., Cha, S., Rejtar, T., Richardson, E.A., Karger, B.L., and Sgroi, D.C. (2012). Integrated proteomic, transcriptomic, and biological network analysis of breast carcinoma reveals molecular features of tumorigenesis and clinical relapse. Mol Cell Proteomics 11, M111.014910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamath, R.S., and Ahringer, J. (2003). Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.K., Lim, H.S., Kawasaki, I., Shim, Y.H., Vaikath, N.N., El-Agnaf, O.M.A., Lee, H.J., and Lee, S.J. (2016). Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy 12, 1849–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M.H., Abudu, Y.P., Acevedo-Arozena, A., et al. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyuncu, S., Loureiro, R., Lee, H.J., Wagle, P., Krueger, M., and Vilchez, D. (2021). Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature 596, 285–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbadia, J., and Morimoto, R.I. (2015). The biology of proteostasis in aging and disease. Annu Rev Biochem 84, 435–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapierre, L.R., Gelino, S., Meléndez, A., and Hansen, M. (2011). Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21, 1507–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Chen, B., Zou, W., Wang, X., Wu, Y., Zhao, D., Sun, Y., Liu, Y., Chen, L., Miao, L., et al. (2016). The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity. J Cell Biol 215, 167–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, V., Ullrich, M., Lam, H., Chew, Y.L., Banister, S., Song, X., Zaw, T., Kassiou, M., Götz, J., and Nicholas, H.R. (2014). Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell Mol Life Sci 71, 3339–3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Du, H., Rutkowski, R., Gartner, A., and Wang, X. (2012). LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337, 351–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, S., Shaw, W.M., Ashraf, J., and Murphy, C.T. (2009). TGF-β Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. PLoS Genet 5, e1000789.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, S., Kleemann, G.A., Ashraf, J.M., Shaw, W.M., and Murphy, C.T. (2010). TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143, 299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391.

    Article  CAS  PubMed  Google Scholar 

  • Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959–3970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou, D. (2008). How old are your eggs? Curr Opin Obstet Gynecol 20, 540–544.

    Article  PubMed  Google Scholar 

  • Palmisano, N.J., Rosario, N., Wysocki, M., Hong, M., Grant, B., and Meléndez, A. (2017). The recycling endosome protein RAB-10 promotes autophagic flux and localization of the transmembrane protein ATG-9. Autophagy 13, 1742–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, M.F., and Lehner, B. (2019). Vitellogenins—yolk gene function and regulation in Caenorhabditis elegans. Front Physiol 10, 1067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reis-Rodrigues, P., Czerwieniec, G., Peters, T.W., Evani, U.S., Alavez, S., Gaman, E.A., Vantipalli, M., Mooney, S.D., Gibson, B.W., Lithgow, G. J., et al. (2012). Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11, 120–127.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, A., Tenzer, S., Hackenberg, M., Erhart, J., Gerhold-Ay, A., Mazur, J., Kuharev, J., Ribeiro, J.M.C., and Kotsyfakis, M. (2014). A systems level analysis reveals transcriptomic and proteomic complexity in ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol Cell Proteomics 13, 2725–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seah, N.E., de Magalhaes Filho, C.D., Petrashen, A.P., Henderson, H.R., Laguer, J., Gonzalez, J., Dillin, A., Hansen, M., and Lapierre, L.R. (2016). Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12, 261–272.

    Article  CAS  PubMed  Google Scholar 

  • Senchuk, M.M., Dues, D.J., Schaar, C.E., Johnson, B.K., Madaj, Z.B., Bowman, M.J., Winn, M.E., and Van Raamsdonk, J.M. (2018). Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 14, e1007268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H.A., and Fire, A. (2001). On the role of RNA amplification in dsrna-triggered gene silencing. Cell 107, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Spieth, J., and Blumenthal, T. (1985). The Caenorhabditis elegans vitellogenin gene family includes a gene encoding a distantly related protein. Mol Cell Biol 5, 2495–2501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spieth, J., Nettleton, M., Zucker-Aprison, E., Lea, K., and Blumenthal, T. (1991). Vitellogenin motifs conserved in nematodes and vertebrates. J Mol Evol 32, 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Li, M., Zhao, D., Li, X., Yang, C., and Wang, X. (2020). Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. eLife 9, e55745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tawo, R., Pokrzywa, W., Kevei, É., Akyuz, M.E., Balaji, V., Adrian, S., Höhfeld, J., and Hoppe, T. (2017). The ubiquitin ligase chip integrates proteostasis and aging by regulation of insulin receptor turnover. Cell 169, 470–482.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • te Velde, E.R., and Pearson, P.L. (2002). The variability of female reproductive ageing. Hum Reprod Update 8, 141–154.

    Article  PubMed  Google Scholar 

  • Templeman, N.M., Luo, S., Kaletsky, R., Shi, C., Ashraf, J., Keyes, W., and Murphy, C.T. (2018). Insulin signaling regulates oocyte quality maintenance with age via cathepsin B activity. Curr Biol 28, 753–760.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, P.R., O’Connor, K., Tate, W.P., and Abraham, W.C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Van Nostrand, E.L., Sánchez-Blanco, A., Wu, B., Nguyen, A., and Kim, S. K. (2013). Roles of the developmental regulator unc-62/homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genet 9, e1003325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rompay, L., Borghgraef, C., Beets, I., Caers, J., and Temmerman, L. (2015). New genetic regulators question relevance of abundant yolk protein production in C. elegans. Sci Rep 5, 16381.

    Article  PubMed  Google Scholar 

  • Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., Lu, H., Pettersson, K., Palm, K., Katayama, S., et al. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun 11, 1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther, D.M., Kasturi, P., Zheng, M., Pinkert, S., Vecchi, G., Ciryam, P., Morimoto, R.I., Dobson, C.M., Vendruscolo, M., Mann, M., et al. (2015). Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M.C., O’Rourke, E.J., and Ruvkun, G. (2008). Fat metabolism links germline stem cells and longevity in C. elegans. Science 322, 957–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M.C., Oakley, H.D., Carr, C.E., Sowa, J.N., and Ruvkun, G. (2014). Gene pathways that delay Caenorhabditis elegans reproductive senescence. PLoS Genet 10, e1004752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Chang, J.T., Guo, B., Hansen, M., Jia, K., Kovács, A.L., Kumsta, C., Lapierre, L.R., Legouis, R., Lin, L., et al. (2015). Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman, S.M., Hinkson, I.V., Elias, J.E., and Kim, S.K. (2015). Reproductive aging drives protein accumulation in the uterus and limits lifespan in C. elegans. PLoS Genet 11, e1005725.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1802233) and the Major Science and Technology Project in Yunnan Province of China (202001BB050001). We are grateful to Dr. J Xu (McMaster University, Canada) for their critical reading of this manuscript. We thank the Caenorhabditis Genetics Center, and Drs. G Ruvkun, M Dong, and X Wang for nematode strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Gang Zou or Ke-Qin Zhang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Ma, YC., Chen, YL. et al. Vitellogenin accumulation leads to reproductive senescence by impairing lysosomal function. Sci. China Life Sci. 66, 439–452 (2023). https://doi.org/10.1007/s11427-022-2242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2242-8

Navigation