Skip to main content
Log in

Highly efficient generation of blastocyst-like structures from spliceosomes-repressed mouse totipotent blastomere-like cells

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Mammalian embryogenesis begins with a totipotent zygote. Blastocyst-like structures can be captured by aggregated cells with extended pluripotent properties in a three-dimensional (3D) culture system. However, the efficiency of generating blastoids is low, and it remains unclear whether other reported totipotent-like stem cells retain a similar capacity. In this study, we demonstrated that spliceosomal repression-induced totipotent blastomere-like cells (TBLCs) form blastocyst-like structures within around 80% of all microwells. In addition, we generated blastoids initiating from a single TBLC. TBLC-blastoids express specific markers of constituent cell lineages of a blastocyst and resemble blastocyst in cell-lineage allocation. Moreover, single-cell RNA sequencing revealed that TBLC-blastoids share a similar transcriptional profile to natural embryos, albeit composed of fewer primitive endoderm-like cells. Furthermore, TBLC-blastoids can develop beyond the implantation stage in vitro and induce decidualization in vivo. In summary, our findings provided an alternative cell type to efficiently generate blastoids for the study of early mouse embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All raw sequencing data can be accessed at the NCBI Gene Expression Omnibus (GEO) (accession number: GSE197779). The raw count of scRNA-sequencing data of E3.5–E7.5 embryos (in-house data) can be found in the Supplementary File.

References

  • Bedzhov, I., Leung, C.Y., Bialecka, M., and Zernicka-Goetz, M. (2014). In vitro culture of mouse blastocysts beyond the implantation stages. Nat Protoc 9, 2732–2739.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.

    Article  CAS  PubMed  Google Scholar 

  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Frias-Aldeguer, J., Kip, M., Vivié, J., Li, L., Alemany, A., Korving, J., Darmis, F., van Oudenaarden, A., Geijsen, N., and Rivron, N.C. (2020). Embryonic signals perpetuate polar-like trophoblast stem cells and pattern the blastocyst axis. bioRxiv, 510362.

  • Goossens, K., Van Soom, A., Van Poucke, M., Vandaele, L., Vandesompele, J., Van Zeveren, A., and Peelman, L.J. (2007). Identification and expression analysis of genes associated with bovine blastocyst formation. BMC Dev Biol 7, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao, Y., Hao, S., Andersen-Nissen, E., Mauck Iii, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.

    Google Scholar 

  • Harrison, S.E., Sozen, B., Christodoulou, N., Kyprianou, C., and Zernicka-Goetz, M. (2017). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356.

  • Hesse, M., Franz, T., Tamai, Y., Taketo, M.M., and Magin, T.M. (2000). Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J 19, 5060–5070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, B., Hu, J., Peng, X., Huang, Q., Peng, L., Deng, E., Barakat, T.S., Chen, J., Pei, D., Fan, X., et al. (2022). Modulation of HDAC activity directly reprogramme embryonic stem cell to trophoblast stem cell. SSRN J, doi: https://doi.org/10.2139/ssrn.4017898.

  • Kruithof-de Julio, M., Alvarez, M.J., Galli, A., Chu, J., Price, S.M., Califano, A., and Shen, M.M. (2011). Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development 138, 3885–3895.

    Article  CAS  PubMed  Google Scholar 

  • Kunath, T., Arnaud, D., Uy, G.D., Okamoto, I., Chureau, C., Yamanaka, Y., Heard, E., Gardner, R.L., Avner, P., and Rossant, J. (2005). Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661.

    Article  CAS  PubMed  Google Scholar 

  • Kunath, T., Strumpf, D., and Rossant, J. (2004). Early trophoblast determination and stem cell maintenance in the mouse—a review. Placenta 25, S32–S38

    Article  PubMed  Google Scholar 

  • Li, R., Zhong, C., Yu, Y., Liu, H., Sakurai, M., Yu, L., Min, Z., Shi, L., Wei, Y., Takahashi, Y., et al. (2019). Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell 179, 687–702.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macfarlan, T.S., Gifford, W.D., Driscoll, S., Lettieri, K., Rowe, H.M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S.L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath, J., and Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Niakan, K.K., Schrode, N., Cho, L.T.Y., and Hadjantonakis, A.K. (2013). Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat Protoc 8, 1028–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohinata, Y., Endo, T.A., Sugishita, H., Watanabe, T., Iizuka, Y., Kawamoto, Y., Saraya, A., Kumon, M., Koseki, Y., Kondo, T., et al. (2022). Establishment of mouse stem cells that can recapitulate the developmental potential of primitive endoderm. Science 375, 574–578.

    Article  CAS  PubMed  Google Scholar 

  • Posfai, E., Schell, J.P., Janiszewski, A., Rovic, I., Murray, A., Bradshaw, B., Yamakawa, T., Pardon, T., El Bakkali, M., Talon, I., et al. (2021). Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 23, 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Rivron, N.C., Frias-Aldeguer, J., Vrij, E.J., Boisset, J.C., Korving, J., Vivié, J., Truckenmüller, R.K., van Oudenaarden, A., van Blitterswijk, C.A., and Geijsen, N. (2018). Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Rossant, J. (2008). Stem cells and early lineage development. Cell 132, 527–531.

    Article  CAS  PubMed  Google Scholar 

  • Rossant, J., and Tam, P.P.L. (2009). Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713.

    Article  CAS  PubMed  Google Scholar 

  • Saiz, N., and Plusa, B. (2013). Early cell fate decisions in the mouse embryo. Reproduction 145, R65–R80.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, N., Windoffer, R., Magin, T.M., and Leube, R.E. (2015). Dissection of keratin network formation, turnover and reorganization in living murine embryos. Sci Rep 5, 9007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, H., Yang, M., Li, S., Zhang, J., Peng, B., Wang, C., Chang, Z., Ong, J., and Du, P. (2021). Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 184, 2843–2859.e20.

    Article  CAS  PubMed  Google Scholar 

  • Sozen, B., Amadei, G., Cox, A., Wang, R., Na, E., Czukiewska, S., Chappell, L., Voet, T., Michel, G., Jing, N., et al. (2018). Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol 20, 979–989.

    Article  CAS  PubMed  Google Scholar 

  • Sozen, B., Cox, A.L., De Jonghe, J., Bao, M., Hollfelder, F., Glover, D.M., and Zernicka-Goetz, M. (2019). Self-organization of mouse stem cells into an extended potential blastoid. Dev Cell 51, 698–712.e8.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A., and Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by fgf4. Science 282, 2072–2075.

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski, A.K. (1961). Mouse chimæras developed from fused eggs. Nature 190, 857–860.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al. (2021). clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Zhao, J., Ren, Y., Wang, X., Lyu, Y., Xie, B., Sun, Y., Yuan, X., Liu, H., Yang, W., et al. (2022). Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res 32, 513–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Ryan, D.J., Wang, W., Tsang, J.C.H., Lan, G., Masaki, H., Gao, X., Antunes, L., Yu, Y., Zhu, Z., et al. (2017a). Establishment of mouse expanded potential stem cells. Nature 550, 393–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Liu, B., Xu, J., Wang, J., Wu, J., Shi, C., Xu, Y., Dong, J., Wang, C., Lai, W., et al. (2017b). Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenker, J., White, M.D., Gasnier, M., Alvarez, Y.D., Lim, H.Y.G., Bissiere, S., Biro, M, and Plachta, N. (2018). Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173, 776–791.e17.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Parmigiani, G., and Johnson, W.E. (2020). ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinf 2.

Download references

Acknowledgements

We thank Dr. Peng Du (Peking University) for their TC1-EGFP ESCs and TC1-EGFP TBLCs, thank Dr. Jiekai Chen and Dr. Duanqing Pei for their single-cell RNA-seq data of blastocysts, and thank Dr. Xudong Fu (Zhejiang University) for his helpful comments on this manuscript. This work was supported by the National Natural Science Foundation of China (32070800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Zhang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Additional information

Materials availability

All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhai, X., Huang, B. et al. Highly efficient generation of blastocyst-like structures from spliceosomes-repressed mouse totipotent blastomere-like cells. Sci. China Life Sci. 66, 423–435 (2023). https://doi.org/10.1007/s11427-022-2209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2209-3

Keywords

Navigation