Skip to main content
Log in

Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Phased small interfering RNAs (phasiRNAs) are abundantly expressed in anthers and linked to environment-related male fertility in grasses, yet how they function under different environmental conditions remains unclear. Here, we identified a rice (Oryza sativa) low temperature-induced Argonaute (AGO) protein, OsAGO1d, that is responsible for generating phasiRNAs and preserving male fertility at low temperature. Loss of OsAGO1d function causes low-temperature male sterility associated with delayed programmed cell death of tapetal cells during anther development. OsAGO1d binds miR2118 and miR2275 family members and triggers phasiRNA biogenesis; it also binds 21-nt phasiRNAs with a 5′ terminal U. In total, phasiRNAs from 972 loci are OsAGO1d-dependent. OsAGO1d protein moves from anther wall cells into meiocytes, where it loads miR2275 to produce 24-nt phasiRNAs. Together, our results show that OsAGO1d acts as a mobile signal to fine-tune phasiRNA production and this function is important for male fertility at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, S., Le, N.T., Koizumi, K., Villar-Briones, A., Nonomura, K.I., Endo, M., Inoue, H., Saze, H., and Komiya, R. (2020). miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat Commun 11, 3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16, 727–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Li, J., Feng, J., Liu, B., Feng, L., Yu, X., Li, G., Zhai, J., Meyers, B.C., and Xia, R. (2021a). sRNAanno—a database repository of uniformly annotated small RNAs in plants. Hortic Res 8, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S. H. (2010). 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107, 15269–15274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R., Deng, Y., Ding, Y., Guo, J., Qiu, J., Wang, B., Wang, C., Xie, Y., Zhang, Z., Chen, J., et al. (2022). Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci 65, 33–92.

    Article  PubMed  Google Scholar 

  • Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., et al. (2021b). The genome sequence archive family: toward explosive data growth and diverse data types. Genom Proteom Bioinf 19, 578–583.

    Article  Google Scholar 

  • Chen, X., and Rechavi, O. (2022). Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 23, 185–203.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, K.M., and Zambryski, P.C. (2001). Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125, 1802–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Yang, J., Mathioni, S.M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C., et al. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113, 15144–15149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, X., and Qi, Y. (2016). RNAi in plants: an argonaute-centered view. Plant Cell 28, 272–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, N., Song, G., Guan, J., Chen, K., Jia, M., Huang, D., Wu, J., Zhang, L., Kong, X., Geng, S., et al. (2017). Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes. Plant Physiol 174, 1779–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher, K.L., Paquette, A.J., Nakajima, K., and Benfey, P.N. (2004). Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 14, 1847–1851.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher, K.L., Sozzani, R., and Lee, C.M. (2014). Intercellular protein movement: deciphering the language of development. Annu Rev Cell Dev Biol 30, 207–233.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L.R., Xu, G., Chao, D.Y., Li, J., Wang, P.Y., Qin, F., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63, 635–674.

    Article  PubMed  Google Scholar 

  • Jha, U.C., Bohra, A., and Jha, R. (2017). Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, P., Lian, B., Liu, C., Fu, Z., Shen, Y., Cheng, Z., and Qi, Y. (2020). 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nat Commun 11, 5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.L., Walbot, V., Sundaresan, V., Vance, V., and Bowman, L.H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19, 1429–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J.P., Tyagi, A.K., and Kapoor, S. (2008). Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genom 9, 451.

    Article  Google Scholar 

  • Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., et al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya, R., Ohyanagi, H., Niihama, M., Watanabe, T., Nakano, M., Kurata, N., and Nonomura, K.I. (2014). Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J 78, 385–397.

    Article  CAS  PubMed  Google Scholar 

  • Lan, T., Yang, X., Chen, J., Tian, P., Shi, L., Yu, Y., Liu, L., Gao, L., Mo, B., Chen, X., et al. (2022). Mechanism for the genomic and functional evolution of the MIR2118 family in the grass lineage. New Phytol 233, 1915–1930.

    Article  CAS  PubMed  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.S., Maple, R., Dürr, J., Dawson, A., Tamim, S., Del Genio, C., Papareddy, R., Luo, A., Lamb, J.C., Amantia, S., et al. (2021). A transposon surveillance mechanism that safeguards plant male fertility during stress. Nat Plants 7, 34–41.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Li, W., Guo, M., Liu, S., Liu, L., Yu, Y., Mo, B., Chen, X., and Gao, L. (2022). Origin, evolution and diversification of plant ARGONAUTE proteins. Plant J 109, 1086–1097.

    Article  CAS  PubMed  Google Scholar 

  • Liao, P.F., Ouyang, J.X., Zhang, J.J., Yang, L., Wang, X., Peng, X.J., Wang, D., Zhu, Y.L., and Li, S.B. (2019). OsDCL3b affects grain yield and quality in rice. Plant Mol Biol 99, 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Shen, Y., Qin, B., Wen, H., Cheng, J., Mao, F., Shi, W., Tang, D., Du, G., Li, Y., et al. (2020a). Oryza sativa RNA-dependent RNA polymerase 6 contributes to double-strand break formation in meiosis. Plant Cell 32, 3273–3289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L., and Chen, X. (2018). Intercellular and systemic trafficking of RNAs in plants. Nat Plants 4, 869–878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Teng, C., Xia, R., and Meyers, B.C. (2020b). PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32, 3059–3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y.J., Li, D., Gong, J., Wang, Y.B., Chen, Z.B., Pang, B.S., Chen, X.C., Gao, J.G., Yang, W.B., Zhang, F.T., et al. (2021). Comparative transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366. BMC Genom 22, 911.

    Article  CAS  Google Scholar 

  • Long, J., Walker, J., She, W., Aldridge, B., Gao, H., Deans, S., Vickers, M., and Feng, X. (2021). Nurse cell-derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373.

  • McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acids Res 40, 4288–4297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., et al. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelbart, M.V., Hasegawa, P.M., and Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16, 237–251.

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel, S., Huang, K., Bélanger, S., Zhan, J., Caplan, J.L., Kramer, E.M., and Meyers, B.C. (2021). Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nat Commun 12, 4941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, W., Ji, J., Xue, Z., Zhang, F., Miao, Y., Yang, H., Tang, D., Du, G., Li, Y., Shen, Y., et al. (2021). PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytol 230, 585–600.

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Li, P., Zhai, J., Zhou, M., Ma, L., Liu, B., Jeong, D.H., Nakano, M., Cao, S., Liu, C., et al. (2012a). Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69, 462–474.

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y., et al. (2012b). Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J no.

  • Song, X., Li, Y., Cao, X., and Qi, Y. (2019). MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol 70, 489–525.

    Article  CAS  PubMed  Google Scholar 

  • Teng, C., Zhang, H., Hammond, R., Huang, K., Meyers, B.C., and Walbot, V. (2020). Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat Commun 11, 2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Wang, J., Shi, B., Yu, T., Qi, J., Meyerowitz, E.M., and Jiao, Y. (2014). The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell 26, 2055–2067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., Zhang, Q., Zhou, H., Ni, F., Wu, X., and Qi, Y. (2009). Rice MicroRNA effector complexes and targets. Plant Cell 21, 3421–3435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., and Gallagher, K.L. (2011). Mobile protein signals in plant development. Curr Opin Plant Biol 14, 563–570.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., Bao, Y., Zhang, Z., Zhao, W., Xiao, J., He, S., Zhang, G., Li, Y., Zhao, G., Chen, R., et al. (2022). Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucl Acids Res 50, D27–D38.

    Article  CAS  Google Scholar 

  • Yang, C., and Cao, X. (2021). Small RNA flow from tapetum cells to germ cells in plants. Sci China Life Sci 64, 1977–1979.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., and Li, J. (2021). Short- and long-term challenges in crop breeding. Natl Sci Rev 8.

  • Zhai, J., Zhang, H., Arikit, S., Huang, K., Nan, G.L., Walbot, V., and Meyers, B.C. (2015). Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112, 3146–3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Li, C., Li, Y., and Yu, H. (2020a). Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nat Plants 6, 1146–1157.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Xia, R., Meyers, B.C., and Walbot, V. (2015). Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Ma, X., Wang, C., Li, Q., Meyers, B.C., Springer, N.M., and Walbot, V. (2021). CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers. New Phytol 229, 2984–2997.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.C., Lei, M.Q., Zhou, Y.F., Yang, Y.W., Lian, J.P., Yu, Y., Feng, Y. Z., Zhou, K.R., He, R.R., He, H., et al. (2020b). Reproductive phasiRNAs regulate reprogramming of gene expression and meiotic progression in rice. Nat Commun 11, 6031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, S., Hu, H., Ren, H., Yang, Z., Qiu, Q., Qi, W., Liu, X., Chen, X., Cui, X., Li, S., et al. (2019). The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor. Nat Commun 10, 1303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, H., Zhou, M., Yang, Y., Li, J., Zhu, L., Jiang, D., Dong, J., Liu, Q., Gu, L., Zhou, L., et al. (2014). RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun 5, 4884.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Huang, K., Teng, C., Abdelgawad, A., Batish, M., Meyers, B.C., and Walbot, V. (2022). 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytol 235, 488–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China to (31788103, 32170620), the Chinese Academy of Sciences (QYZDY-SSW-SMC022, XDB27030201, XDA24010302) and the State Key Laboratory of Plant Genomics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianwei Song or Xiaofeng Cao.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, F., Luo, H., Yang, C. et al. Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice. Sci. China Life Sci. 66, 197–208 (2023). https://doi.org/10.1007/s11427-022-2204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2204-y

Keywords

Navigation